Synthesis 2019; 51(11): 2261-2277
DOI: 10.1055/s-0037-1611773
short review
© Georg Thieme Verlag Stuttgart · New York

A New Wave of Amide Bond Formations for Peptide Synthesis

Karlijn Hollanders
a   Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium   Email: Steven.ballet@vub.be
b   Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium   Email: bert.maes@uantwerpen.be
,
Bert U. W. Maes*
b   Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium   Email: bert.maes@uantwerpen.be
,
a   Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium   Email: Steven.ballet@vub.be
› Author Affiliations
This work was financially supported by the Fonds Wetenschappelijk Onderzoek [FWO Vlaanderen (Research Foundation Flanders); Research Project and Scientific Research Network (WOG)].
Further Information

Publication History

Received: 06 January 2019

Accepted: 19 February 2019

Publication Date:
24 April 2019 (online)


This review is dedicated to the scientific career of Prof. Em. Dirk Tourwé.

Abstract

The construction of peptidic amide bonds has become a daily laboratory practice by virtue of well-established ‘coupling reagents’. Nonetheless, inherent limitations connected to these classical coupling methods in terms of waste, safety and expense have yet to be conquered. Research efforts have been devoted to synthetic methods able to surpass these limitations. This short review focuses on the advances made in these ‘non-classical’ methods for amide bond formation with a specific application in peptide chemistry. It consists of two main sections: (i) novel carboxylic activation reagents, and (ii) carboxylic acid and amine surrogates.

1 Introduction

2 Alternative Carboxylic acid Activation Reagents

3 Carboxylic Acid and Amine Surrogates

4 Conclusion and Perspectives

 
  • References

    • 1a Mullard A. Nat. Rev. Drug Discovery 2018; 17: 81
    • 1b Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Drug Discovery Today 2010; 15: 40
    • 1c Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382
    • 1d Kaspar AA, Reichert JM. Drug Discovery Today 2013; 18: 807
    • 1e Lau JL, Dunn MK. Bioorg. Med. Chem. 2018; 26: 2700
    • 2a Jaradat DM. M. Amino Acids 2018; 50: 39
    • 2b Albericio F, El-Faham A. Org. Process Rev. Dev. 2018; 22: 760
  • 3 Maes V, Tourwé D. Aspects of Peptidomimetics. In Peptide and Protein Design for Biopharmaceutical Applications. Jensen KJ. John Wiley & Sons; Chichester: 2009. Chap. 3, 49
    • 4a Fosgerau K, Hoffmann T. Drug Discovery Today 2015; 20: 122
    • 4b Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Bioorg. Med. Chem. 2018; 26: 2759
    • 5a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 5b Pattabiraman VR, Bode JW. Nature 2011; 480: 471
  • 6 El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
  • 7 Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Chem. Eur. J. 2009; 15: 9394
    • 8a Subirós-Funosas R, Khattab SN, Nieto-Rodriguez L, El-Faham A, Albericio F. Aldrichimica Acta 2013; 46: 21
    • 8b Subirós-Funosas R, Nieto-Rodriguez L, Jensen KJ, Albericio F. J. Pept. Sci. 2013; 19: 408
    • 9a Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 9b Montalbetti CA, Falque V. Tetrahedron 2005; 61: 10827
    • 9c Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 9d Albericio F, Chinchilla R, Dodsworth DJ, Nájera C. Org. Prep. Proced. Int. 2001; 33: 203
    • 9e Albericio F. Curr. Opin. Chem. Biol. 2004; 8: 211
  • 10 Dev D, Palakurthy NB, Thalluri K, Chandra J, Mandal B. J. Org. Chem. 2014; 79: 5420
  • 11 Chandra J, Manne SR, Mondal S, Mandal B. ACS Omega 2018; 3: 6120
  • 12 Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
  • 13 Aspin SJ, Taillemaud S, Cyr P, Charette AB. Angew. Chem. Int. Ed. 2016; 55: 13833
  • 14 Jiang Y.-Y, Zhu L, Liang Y, Man X, Bi S. J. Org. Chem. 2017; 82: 9087
  • 15 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 16 Tian J, Gao W.-C, Zhou D.-M, Zhang C. Org. Lett. 2012; 14: 3020
  • 17 Zhang C, Liu S.-S, Sun B, Tian J. Org. Lett. 2015; 17: 4106
  • 18 Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ. Green Chem. 2016; 18: 288
  • 19 Liu D, Guo Y.-L, Qu J, Zhang C. Beilstein J. Org. Chem. 2018; 14: 1112
    • 20a Kamiński ZJ, Kolesińska B, Kolesińska J, Sabatino G, Chelli M, Rovero P, Błaszczyk M, Główka ML, Papini AM. J. Am. Chem. Soc. 2005; 127: 16912
    • 20b Duangkamol C, Jaita S, Wangngae S, Phakhodee W, Pattarawarapan M. RSC Adv. 2015; 5: 52624
  • 21 Zambroń BK, Dubbaka SR, Marković D, Moreno-Clavijo E, Vogel P. Org. Lett. 2013; 15: 2550
  • 22 Krause T, Baader S, Erb B, Gooßen LJ. Nat. Commun. 2016; 7: 11732
    • 23a Gais H.-J. Angew. Chem., Int. Ed. Engl. 1978; 17: 597
    • 23b Neuenschwander M, Fahrni H.-P, Lienhard U. Helv. Chim. Acta 1978; 61: 2437
  • 24 DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
  • 25 Hu L, Xu S, Zhao Z, Yang Y, Peng Z, Yang M, Wang C, Zhao J. J. Am. Chem. Soc. 2016; 138: 13135
    • 26a Yazawa K, Numata K. Molecules 2014; 19: 13755
    • 26b Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 26c Xu S, Zhao Z, Zhao J. Chin. Chem. Lett. 2018; 29: 1009
    • 26d Białkowska AM, Morawski K, Florczak T. J. Ind. Microbiol. Biotechnol. 2017; 44: 1325
    • 27a Werdehausen A, Weiss H. US3801610A, 1974
    • 27b Hull EH. US05868120, 1979
    • 28a Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
    • 28b Lundberg H, Tinnis F, Adolfsson H. Chem. Eur. J. 2012; 18: 3822
    • 28c Lundberg H, Adolfsson H. ACS Catal. 2015; 5: 3271
  • 29 de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
  • 30 Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 31a Ishihara K, Ohara S, Yamamoto H. Macromolecules 2000; 33: 3511
    • 31b Maki T, Ishihara K, Yamamoto H. Tetrahedron 2007; 63: 8645
    • 31c Ishihara K, Kondo S, Yamamoto H. Synlett 2001; 1371
  • 32 Latta R, Springsteen G, Wang B. Synthesis 2001; 1611
  • 33 Liu S, Yang Y, Liu X, Ferdousi FK, Batsanov AS, Whiting A. Eur. J. Org. Chem. 2013; 5692
    • 34a Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 34b Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
  • 35 Fatemi S, Gernigon N, Hall DG. Green Chem. 2015; 17: 4016
  • 36 El Dine TM, Erb W, Berhault Y, Rouden J, Blanchet J. J. Org. Chem. 2015; 80: 4532
  • 37 El Dine TM, Rouden J, Blanchet J. Chem. Commun. 2015; 51: 16084
    • 38a Dimitrijević E, Taylor MS. ACS Catal. 2013; 3: 945
    • 38b Lee D, Williamson CL, Chan L, Taylor MS. J. Am. Chem. Soc. 2012; 134: 8260
  • 39 Lanigan RM, Starkov P, Sheppard TD. J. Org. Chem. 2013; 78: 4512
  • 40 Sabatini MT, Boulton LT, Sheppard TD. Sci. Adv. 2017; 3: e1701028
  • 41 Wang K, Lu Y, Ishihara K. Chem. Commun. 2018; 54: 5410
  • 42 Liu Z, Noda H, Shibasaki M, Kumagai N. Org. Lett. 2018; 20: 612
  • 43 Dawson PE, Muir TW, Clark-Lewis I, Kent SB. H. Science 1994; 266: 776
    • 44a Conibear AC, Watson EE, Payne RJ, Becker CF. W. Chem. Soc. Rev. 2018; 47: 9046
    • 44b Kent SB. H. Chem. Soc. Rev. 2009; 38: 338
    • 44c Burke HM, McSweeney L, Scanlan EM. Nat. Commun. 2017; 8: 15655
  • 45 Ohshima T, Hayashi Y, Agura K, Fujii Y, Yoshiyama A, Mashima K. Chem. Commun. 2012; 48: 5434
  • 46 Furukawa S, Fukuyama T, Matsui A, Kuratsu M, Nakaya R, Ineyama T, Ueda H, Ryu I. Chem. Eur. J. 2015; 21: 11980
  • 47 Tsuji H, Yamamoto H. J. Am. Chem. Soc. 2016; 138: 14218
  • 48 Muramatsu W, Tsuji H, Yamamoto H. ACS Catal. 2018; 8: 2181
  • 49 Popovic S, Bieräugel H, Detz RJ, Kluwer AM, Koole JA. A, Streefkerk DE, Hiemstra H, van Maarseveen JH. Chem. Eur. J. 2013; 19: 16934
  • 50 Liu H, Li X. Acc. Chem. Res. 2018; 51: 1643
  • 51 Narendra N, Thimmalapura VM, Hosamani B, Prabhu G, Kumar LR, Sureshbabu VV. Org. Biomol. Chem. 2018; 16: 3524
  • 52 Crich D, Sharma I. Angew. Chem. Int. Ed. 2009; 48: 2355
  • 53 Mali SM, Jadhav SV, Gopi HN. Chem. Commun. 2012; 48: 7085
    • 54a Crich D, Sana K, Guo S. Org. Lett. 2007; 9: 4423
    • 54b Wu W, Zhang Z, Liebeskind LS. J. Am. Chem. Soc. 2011; 133: 14256
  • 55 Blake J. Int. J. Pept. Protein Res. 1981; 17: 273
  • 56 Pan J, Devarie-Baez NO, Xian M. Org. Lett. 2011; 13: 1092
  • 57 Khaybullin RN, Panda SS, Mirzai S, Toneff E, Asiri AM, Hall CD, Katritzky AR. RSC Adv. 2014; 4: 55210
  • 58 Wang P, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 17045
  • 59 Mali SM, Gopi HN. J. Org. Chem. 2014; 79: 2377
  • 60 Chen W, Shao J, Hu M, Yu W, Giulianotti MA, Houghten RA, Yu Y. Chem. Sci. 2013; 4: 970
    • 61a Messeri T, Sternbach DD, Tomkinson NC. Tetrahedron Lett. 1998; 39: 1669
    • 61b Messeri T, Sternbach DD, Tomkinson NC. Tetrahedron Lett. 1998; 39: 1673
  • 62 Crich D, Sharma I. Angew. Chem. Int. Ed. 2009; 48: 7591
  • 63 Karmakar P, Talan RS, Sucheck SJ. Org. Lett. 2011; 13: 5298
  • 64 Durek T, Alewood PF. Angew. Chem. Int. Ed. 2011; 50: 12042
  • 65 Temperini A, Piazzolla F, Minuti L, Curini M, Siciliano C. J. Org. Chem. 2017; 82: 4588
    • 66a Li X, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 5446
    • 66b Li X, Yuan Y, Berkowitz WF, Todaro LJ, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 13222
    • 66c Jones GO, Li X, Hayden AE, Houk KN, Danishefsky SJ. Org. Lett. 2008; 10: 4093
  • 67 Li X, Yuan Y, Kan C, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 13225
  • 68 Wilson RM, Stockdill JL, Wu X, Li X, Vadola PA, Park PK, Wang P, Danishefsky SJ. Angew. Chem. Int. Ed. 2012; 51: 2834
  • 69 Wu X, Stockdill JL, Wang P, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 4098
  • 70 Wang T, Danishefsky SJ. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 11708
  • 71 Wang T, Danishefsky SJ. J. Am. Chem. Soc. 2012; 134: 13244
  • 72 Roberts AG, Johnston EV, Shieh J.-H, Sondey JP, Hendrickson RC, Moore MA. S, Danishefsky SJ. J. Am. Chem. Soc. 2015; 137: 13167
  • 73 Pourvali A, Cochrane JR, Hutton CA. Chem. Commun. 2014; 50: 15963
  • 74 Suppo J.-S, Subra G, Bergès M, de Figueiredo RM, Campagne J.-M. Angew. Chem. Int. Ed. 2014; 53: 5389
  • 75 Nieto-García O, Jaffee MB, Mühlberg M, Hackenberger CP. R. The Staudinger Ligation . In Chemoselective and Bioorthogonal Ligation Reactions: Concepts and Applications, Vol. 1. Algar WR, Dawson PE, Medintz IL. Wiley-VCH; Weinheim: 2017. Chap. 4, 97
    • 76a Kosal AD, Wilson EE, Ashfeld BL. Angew. Chem. 2012; 124: 12202
    • 76b Kosal AD, Wilson EE, Ashfeld BL. Chem. Eur. J. 2012; 18: 14444
  • 77 Bode JW, Fox RM, Baucom KD. Angew. Chem. Int. Ed. 2006; 45: 1248
  • 78 Ju L, Lippert AR, Bode JW. J. Am. Chem. Soc. 2008; 130: 4253
  • 79 Ju L, Bode JW. Org. Biomol. Chem. 2009; 7: 2259
    • 80a Rohrbacher F, Zwicky A, Bode JW. Helv. Chim. Acta 2018; 101: e1800039
    • 80b Thuaud F, Rohrbacher F, Zwicky A, Bode JW. Org. Lett. 2016; 18: 3670
  • 81 Fukuzumi T, Bode JW. J. Am. Chem. Soc. 2009; 131: 3864
  • 82 Medina SI, Wu J, Bode JW. Org. Biomol. Chem. 2010; 8: 3405
    • 83a Wu J, Ruiz-Rodríguez J, Comstock JM, Dong JZ, Bode JW. Chem. Sci. 2011; 2: 1976
    • 83b Wucherpfennig TG, Pattabiraman VR, Limberg FR. P, Ruiz-Rodríguez J, Bode JW. Angew. Chem. Int. Ed. 2014; 53: 12248
    • 83c Boross GN, Shimura S, Besenius M, Tennagels N, Rossen K, Wagner M, Bode JW. Chem. Sci. 2018; 9: 8388
  • 84 Fukuzumi T, Ju L, Bode JW. Org. Biomol. Chem. 2012; 10: 5837
    • 85a Pattabiraman VR, Ogunkoya AO, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 5114
    • 85b Wucherpfennig TG, Rohrbacher F, Pattabiraman VR, Bode JW. Angew. Chem. Int. Ed. 2014; 53: 12244
  • 86 Ogunkoya AO, Pattabiraman VR, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9693
  • 87 Murar CE, Harmand TJ, Bode JW. Bioorg. Med. Chem. 2017; 25: 4996
    • 88a Harmand TJ, Murar CE, Bode JW. Nat. Protoc. 2016; 11: 1130
    • 88b Rohrbacher F, Zwicky A, Bode JW. Chem. Sci. 2017; 8: 4051
    • 88c He C, Kulkarni SS, Thuaud F, Bode JW. Angew. Chem. Int. Ed. 2015; 54: 12996
    • 88d Bode JW. Acc. Chem. Res. 2017; 50: 2104
    • 88e Harmand TJ, Pattabiraman VR, Bode JW. Angew. Chem. Int. Ed. 2017; 56: 12639
    • 88f Wucherpfennig TG, Müller S, Wolfrum C, Bode JW. Helv. Chim. Acta 2016; 99: 897
  • 89 Hoffmann E, Faiferman I. J. Org. Chem. 1964; 29: 748
  • 90 Krishnamurthy M, Vishwanatha T, Panguluri NR, Panduranga V, Sureshbabu VV. Synlett 2015; 26: 2565
  • 92 Shen B, Makley DM, Johnston JN. Nature 2010; 465: 1027
  • 93 Shackleford JP, Shen B, Johnston JN. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 44
  • 94 Schwieter KE, Shen B, Shackleford JP, Leighty MW, Johnston JN. Org. Lett. 2014; 16: 4714
  • 95 Makley DM, Johnston JN. Org. Lett. 2014; 16: 3146
  • 96 Schwieter KE, Johnston JN. ACS Catal. 2015; 5: 6559
  • 97 Schwieter KE, Johnston JN. Chem. Commun. 2016; 52: 152
  • 98 Li J, Lear MJ, Kawamoto Y, Umemiya S, Wong AR, Kwon E, Sato I, Hayashi Y. Angew. Chem. Int. Ed. 2015; 54: 12986
    • 100a Abou-Shehada S, Mampuys P, Maes BU. W, Clark JH, Summerton L. Green Chem. 2017; 19: 249
    • 100b McElroy CR, Constantinou A, Jones LC, Summerton L, Clark JH. Green Chem. 2015; 17: 3111
    • 101a Isidro-Llobet A, Kenworthy MN, Mukerjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar F. J. Org. Chem. 2019; 84: 4615
    • 101b Al Musaimi O, Jad YE, Kumar A, El-Faham A, Collins JM, Basso A, de la Torre BG, Albericio F. Org. Process Res. Dev. 2018; 22: 1809