Synlett 2019; 30(12): 1377-1383
DOI: 10.1055/s-0037-1611771
synpacts
© Georg Thieme Verlag Stuttgart · New York

Vinyl Sulfoxonium Ylide: A New Vinyl Carbenoid Transfer Reagent for the Synthesis of Heterocycles

a  Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
b  Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway   Email: janakiray.vaitla@uit.no   Email: kathrin.hopmann@uit.no
,
b  Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway   Email: janakiray.vaitla@uit.no   Email: kathrin.hopmann@uit.no
,
Kathrin H. Hopmann*
a  Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
b  Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway   Email: janakiray.vaitla@uit.no   Email: kathrin.hopmann@uit.no
› Author Affiliations
We thank the Research Council of Norway (FRINATEK Grant No. 231706 and Centre of Excellence Grant No. 262695), the Tromsø Research Foundation (Grant No. TFS2016 KHH), and Nordforsk (Grant No. 85378).
Further Information

Publication History

Received: 13 February 2019

Accepted after revision: 05 March 2019

Publication Date:
10 April 2019 (online)

Abstract

Sulfoxonium ylides have recently gained prominence as safe carbenoid precursors in metal-catalyzed reactions. The stability and reactivity of sulfoxonium ylides depend on the substitution of the ylide carbon. The reactivity of vinyl-substituted sulfoxonium ylides is different and offers several advantages over known stabilized sulfoxonium ylides in the case of carbenoid transfer reactions. Herein, we provide an overview of early efforts in this area, with particular emphasis on our own recent development of sulfoxonium ylide-derived vinyl carbenoid transformations for N-Heterocycles.

1 Introduction

2 Classification of Sulfoxonium Ylides

3 Synthesis of Vinyl Sulfoxonium Ylides

4 [3+2] Annulation of Vinyl Sulfoxonium Ylides

5 [4+1] Annulation of Vinyl Sulfoxonium Ylides

6 Conclusion

 
  • References

  • 1 Sundberg RJ. In Comprehensive Heterocyclic Chemistry, 2nd ed., Vol. 2. Vol. 2 Bird CW. Pergamon; Oxford U.K.: 1995: 121
  • 2 Cheng Q.-Q, Yu Y, Yedoyan J, Doyle MP. ChemCatChem 2018; 10: 488
  • 3 Doyle MP, Yan M, Hu W, Gronenberg LS. J. Am. Chem. Soc. 2003; 125: 4692
  • 4 Wang X, Xu X, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2011; 133: 16402
  • 5 Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
  • 6 Shapiro ND, Toste FD. J. Am. Chem. Soc. 2008; 130: 9244
  • 7 Reddy RP, Davies HM. J. Am. Chem. Soc. 2007; 129: 10312
  • 8 Davies HM. L. Curr. Org. Chem. 1998; 2: 463
  • 9 Moore JA, Ree DE. Org. Synth. 1961; 41: 16
  • 10 Archambeau A, Miege F, Meyer C, Cossy J. Acc. Chem. Res. 2015; 48: 1021
  • 11 Kazem Shiroodi R, Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
    • 12a Kramer S, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 4681
    • 12b Huang X, Peng B, Luparia M, Gomes LF. R, Veiros LF, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 8886
  • 13 Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2018; 57: 16180
    • 14a Burtoloso AC. B, Dias RM. P, Leonarczyk IA. Eur. J. Org. Chem. 2013; 5005
    • 14b Bayer A, Vaitla J. Synthesis 2018; 51: 612
  • 15 Neuhaus JD, Oost R, Merad J, Maulide N. Top. Curr. Chem. 2018; 376: 15
  • 16 Janot C, Palamini P, Dobson BC, Muir J, Aissa C. Org. Lett. 2019; 21: 296
    • 17a Mangion IK, Ruck RT, Rivera N, Huffman MA, Shevlin M. Org. Lett. 2011; 13: 5480
    • 17b Molinaro C, Bulger PG, Lee EE, Kosjek B, Lau S, Gauvreau D, Howard ME, Wallace DJ, O’Shea PD. J. Org. Chem. 2012; 77: 2299
  • 18 Baldwin JE, Adlington RM, Godfrey CR. A, Gollins DW, Vaughan JG. J. Chem. Soc., Chem. Commun. 1993; 1434
  • 19 Cheng J, Wu X, Sun S, Yu J.-T. Synlett 2018; 30: 21
  • 20 Mangion IK, Nwamba IK, Shevlin M, Huffman MA. Org. Lett. 2009; 11: 3566
  • 21 Sheldon RA, Arends IW. C. E, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 2007: 91
  • 22 Davies HM, Hedley SJ. Chem. Soc. Rev. 2007; 36: 1109
  • 23 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 867
  • 24 Suarez AI. O, del Río MP, Remerie K, Reek JN. H, de Bruin B. ACS Catal. 2012; 2: 2046
  • 25 Vaitla J, Hopmann KH, Bayer A. Org. Lett. 2017; 19: 6688
    • 26a Davies HM. L, Beckwith RE. Chem. Rev. 2003; 103: 2861
    • 26b Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
  • 27 Sun XL, Tang Y. Acc. Chem. Res. 2008; 41: 937
  • 28 Bolm C. Nat. Chem. 2009; 1: 420
    • 29a Zhu S.-F, Zhou Q.-L. Natl. Sci. Rev. 2014; 1: 580
    • 29b Bauer I, Knolker HJ. Chem. Rev. 2015; 115: 3170
  • 30 Ide J, Kishida Y. Tetrahedron Lett. 1966; 7: 1787
  • 31 Goudreau SR, Charette AB. J. Am. Chem. Soc. 2009; 131: 15633
  • 32 Seitz WJ, Saha AK, Casper D, Hossain MM. Tetrahedron Lett. 1992; 33: 7755
  • 33 Bailly C. Mar. Drugs 2015; 13: 1105
  • 34 Chai DI, Lautens M. J. Org. Chem. 2009; 74: 3054
  • 35 Chang M.-Y, Sun P.-P, Chen S.-T, Chang N.-C. Tetrahedron Lett. 2003; 44: 5271
  • 36 Tonogaki K, Itami K, Yoshida J. J. Am. Chem. Soc. 2006; 128: 1464
  • 37 Mai A, Valente S, Nebbioso A, Simeoni S, Ragno R, Massa S, Brosch G, De Bellis F, Manzo F, Altucci L. Int. J. Biochem. Cell Biol. 2009; 41: 235
  • 38 Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2017; 56: 4277
  • 39 Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
  • 40 Barluenga J, Lonzi G, Riesgo L, Lopez LA, Tomas M. J. Am. Chem. Soc. 2010; 132: 13200
  • 41 Dawande SG, Kanchupalli V, Kalepu J, Chennamsetti H, Lad BS, Katukojvala S. Angew. Chem. Int. Ed. 2014; 53: 4076