Synthesis 2019; 51(10): 2100-2106
DOI: 10.1055/s-0037-1611756
short review
© Georg Thieme Verlag Stuttgart · New York

Chromium-Catalyzed Cross-Couplings and Related Reactions

Jie Li*
Ludwig-Maximilians-Universität München, Department Chemie und Biochemie, Butenandtstr. 5–13, Haus F, 81377 Munich, Germany   Email: [email protected]   Email: [email protected]
,
Ludwig-Maximilians-Universität München, Department Chemie und Biochemie, Butenandtstr. 5–13, Haus F, 81377 Munich, Germany   Email: [email protected]   Email: [email protected]
› Author Affiliations
We thank the Deutsche Forschungsgemeinschaft (DFG), the National Natural Science Foundation of China (Grant No. 21602083), and the Natural Science Foundation of Jiangsu Province (No. BK20160160) for financial support.
Further Information

Publication History

Received: 18 January 2019

Accepted after revision: 25 February 2019

Publication Date:
21 March 2019 (online)


Abstract

Transition-metal-catalyzed cross-couplings have been recognized as a powerful tool for sustainable syntheses. Despite the fact that remarkable progress was achieved by palladium and nickel catalysis, the high price and toxicity still remained a drawback. Recently, naturally more abundant and less toxic low-valent chromium salts, such as Cr(II) and Cr(III) chlorides, displayed notable unique catalytic reactivity. Thus, recent progress in the field of chromium-catalyzed cross-couplings and related reactions are highlighted in the present short review until December­ 2018.

1 Introduction and Early Chromium-Mediated Reactions

2 Chromium-Catalyzed Cross-Couplings and Related Reactions

3 Conclusion

 
  • References

  • 1 Comprehensive Organic Synthesis, 2nd ed. Knochel P, Molander GA. Elsevier; Amsterdam: 2014
    • 2a Hanson JR. Synthesis 1974; 1
    • 2b Ho T.-L. Synthesis 1979; 1
    • 3a Fürstner A. Chem. Rev. 1999; 99: 991
    • 3b Holzwarth MS, Plietker B. ChemCatChem 2013; 5: 1650
    • 4a Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
    • 4b Hiyama T, Okude Y, Kimura K, Nozaki H. Bull. Chem. Soc. Jpn. 1982; 55: 561
  • 5 Auvray P, Knochel P, Normant JF. Tetrahedron Lett. 1986; 27: 5091
  • 6 Jubert C, Nowotny S, Kornemann D, Antes I, Tucker CE, Knochel P. J. Org. Chem. 1992; 57: 6384
    • 7a Takai K, Kimura K, Kuroda T, Hiyama T, Nozaki H. Tetrahedron Lett. 1983; 24: 5281
    • 7b Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
  • 8 Jin H, Uenishi J, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
  • 9 Belyk K, Rozema MJ, Knochel P. J. Org. Chem. 1992; 57: 4070
  • 10 Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
  • 11 Matsubara S, Horiuchi M, Takai K, Utimoto K. Chem. Lett. 1995; 259
  • 12 Takai K, Toshikawa S, Inoue A, Kokumai R, Hirano M. J. Organomet. Chem. 2007; 692: 520
  • 13 Takai K, Toshikawa S, Inoue A, Kokumai R. J. Am. Chem. Soc. 2003; 125: 12990
  • 14 Takai K, Matsukawa N, Takahashi A, Fujii T. Angew. Chem. Int. Ed. 1998; 37: 152
    • 16a Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 16b Shinokubo H, Oshima K. Eur. J. Org. Chem. 2004; 2081
    • 16c Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317
    • 16d Fürstner A. Angew. Chem. Int. Ed. 2009; 48: 1364
    • 17a Gosmini C, Begouin J.-M, Moncomble A. Chem. Commun. 2008; 3221
    • 17b Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
    • 18a Cahiez G, Duplais C, Buendia J. Chem. Rev. 2009; 109: 1434
    • 18b Khusnutdinov RI, Bayguzina AR, Dzhemilev UM. Russ. J. Org. Chem. 2012; 48: 309
  • 19 Steib AK, Kuzmina OM, Fernandez S, Flubacher D, Knochel P. J. Am. Chem. Soc. 2013; 135: 15346
  • 20 Steib AK, Kuzmina OM, Fernandez S, Malhotra S, Knochel P. Chem. Eur. J. 2015; 21: 1961
  • 21 https://www.ich.org/products/guidelines/quality/article/quality-guidelines.html (International Conference on Harmonization Guidelines for Elemental Impurities).
  • 22 Steib AK, Fernandez S, Kuzmina OM, Corpet M, Gosmini C, Knochel P. Synlett 2015; 26: 1049
  • 23 Bellan AB, Kuzmina OM, Vetsova VA, Knochel P. Synthesis 2017; 49: 188
  • 24 Zeng X, Cong X. Org. Chem. Front. 2015; 2: 69
    • 25a Cong X, Tang H, Zeng X. J. Am. Chem. Soc. 2015; 137: 14367
    • 25b Cong X, Fan F, Ma P, Luo M, Chen H, Zeng X. J. Am. Chem. Soc. 2017; 139: 15182
  • 26 Chen C, Liu P, Luo M, Zeng X. ACS Catal. 2018; 8: 5864
  • 27 Tang J, Liu P, Zeng X. Chem. Commun. 2018; 54: 9325
  • 28 Fan F, Tang J, Luo M, Zeng X. J. Org. Chem. 2018; 83: 13549
    • 29a Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
    • 29b Li K, Tan G, Huang J, Song F, You J. Angew. Chem. Int. Ed. 2013; 52: 12942
    • 29c Gu Q, Al Mamari HH, Graczyk K, Diers E, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868
    • 29d Ding Z, Yoshikai N. Org. Lett. 2010; 12: 4180
    • 29e Gao K, Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2010; 132: 12249
    • 29f Gao K, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
    • 29g Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 29h Gao K, Yamakawa T, Yoshikai N. Synthesis 2014; 46: 2024
  • 30 Kuzmina OM, Knochel P. Org. Lett. 2014; 16: 5208
  • 31 Li Y, Deng G, Zeng X. Organometallics 2016; 35: 747
  • 32 Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 1569
  • 33 Yan J, Yoshikai N. Org. Lett. 2017; 19: 6630
  • 34 Yan J, Yoshikai N. Org. Chem. Front. 2017; 4: 1972
  • 35 Schwarz JL, Schaefers F, Tlahuext-Aca A, Lueckemeier L, Glorius F. J. Am. Chem. Soc. 2018; 140: 12705
  • 36 Wang Z, Ji H, He W.-M, Xiong Y, Zhang G. Synthesis 2018; 50: 4915

    • For some very recent work see also:
    • 37a Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
    • 37b Matos JL. M, Vásquez-Céspedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976