Synthesis 2019; 51(07): 1516-1528
DOI: 10.1055/s-0037-1611714
short review
© Georg Thieme Verlag Stuttgart · New York

Synthetic Approaches to Nitro-Substituted Isoxazoles

Dmitry A. Vasilenko
a  Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow, 119991, Russian Federation   Email: [email protected]
,
Kseniya N. Sedenkova
a  Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow, 119991, Russian Federation   Email: [email protected]
b  IPhaC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russian Federation
,
Tamara S. Kuznetsova
a  Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow, 119991, Russian Federation   Email: [email protected]
,
Elena B. Averina*
a  Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow, 119991, Russian Federation   Email: [email protected]
b  IPhaC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russian Federation
› Author Affiliations
We thank the Russian Science Foundation, grant no. 17-15-01455 for financial support of this work.
Further Information

Publication History

Received: 22 October 2018

Accepted after revision: 22 November 2018

Publication Date:
27 February 2019 (online)


Abstract

Nitro-substituted isoxazoles are of utmost interest both as versatile intermediates for targeted organic synthesis and as perspective bioactive compounds for drug development. Nevertheless, the existing approaches to them usually lack generality and strongly depend on the position of the nitro group and on the presence of other substituents in the isoxazole ring. This review provides the first systematization of all available data concerning synthetic approaches to 3-, 4-, and 5-nitroisoxazoles. There are a number of preparative approaches to 4-nitroisoxazoles based on classical heterocyclization reactions of nitro-substituted compounds and the nitration of isoxazoles. 3-Nitro- and, especially, 5-nitroisoxazoles are much less readily available. A few methods affording 3-nitroisoxazoles have been reported, often employing the heterocyclization of unsaturated compounds by treatment with sodium nitrite. The sole general preparative method for 5-nitroisoxazoles, containing a variety of functional groups, employs the heterocyclization of electrophilic alkenes by treatment with tetranitromethane activated with triethylamine.

1 Introduction

2 Synthesis of 4-Nitroisoxazoles

2.1 Nitration of Isoxazoles

2.2 Condensations of α-Nitro Ketones or Their Oximes

2.3 1,3-Dipolar Cycloaddition of Nitrile Oxides to Acetylenes and Their Synthetic Equivalents

2.4 Heterocyclization of Acetylene Derivatives by Treatment with Sodium Nitrite

2.5 Heterocyclization of Nitro Derivatives of 1,3-Diketones and Their Synthetic Equivalents

2.6 Miscellaneous Methods

3 Synthesis of 3-Nitroisoxazoles

3.1 Heterocyclization of Acetylene Derivatives or 1,3-Dihalogenoalkenes by Treatment with Sodium Nitrite

3.2 Heterocyclization of Morita–Baylis–Hillman Acetates by Treatment with Sodium Nitrite

3.3 1,3-Dipolar Cycloadditions

4 Synthesis of 5-Nitroisoxazoles

4.1 1,3-Dipolar Cycloadditions

4.2 Synthesis Using Polynitro Compounds

5 Conclusion

 
  • References

  • 1 Cordero FM, Giomi D, Lascialfari L. Prog. Heterocycl. Chem. 2013; 25: 291
  • 2 Cordero FM, Giomi D, Lascialfari L. Prog. Heterocycl. Chem. 2015; 27: 321
  • 3 Hamama WS, Ibrahim ME, Zoorob HH. Synth. Commun. 2013; 43: 2393
  • 4 Hu F, Szostaka M. Adv. Synth. Catal. 2015; 357: 2583
  • 5 Galenko AV, Khlebnikov AF, Novikov MS, Pakalnis VV, Rostovskii NV. Russ. Chem. Rev. 2015; 84: 335 ; Usp. Khim. 2015, 84, 335
  • 6 Fuse S, Morita T, Nakamura H. Synthesis 2017; 49: 2351
  • 7 Morita T, Yugandar S, Fuse S, Nakamura H. Tetrahedron Lett. 2018; 59: 1159
  • 8 Sysak A, Obmińska-Mrukowicz B. Eur. J. Med. Chem. 2017; 137: 292
  • 9 Lamberth C. J. Heterocycl. Chem. 2018; 55: 2035
  • 10 Zhua J, Moa J, Lina H.-z, Chenb Y, Sun H.-p. Bioorg. Med. Chem. 2018; 26: 3065
  • 11 The Nitro Group in Organic Synthesis . Ono N. Wiley-VCH; New York: 2001: 372
  • 12 Denmark SE, Cottell JJ. Chem. Heterocycl. Compd. 2002; 59: 83
  • 13 Ioffe SL. In Nitrile Oxide, Nitrones and Nitronates in Organic Synthesis, 2nd ed. Feuer H. Wiley-VCH; Hoboken: 2008: 435
  • 14 Halimehjani AZ, Namboothiri IN. N, Hooshmand SE. RSC Adv. 2014; 4: 48022
  • 15 Weiwer M, Bittker JA, Lewis TA, Shimada K, Yang WS, MacPherson L, Dandapani S, Palmer M, Stockwell BR, Schreiber SL, Munoz B. Bioorg. Med. Chem. Lett. 2012; 22: 1822
  • 16 de Julián-Ortiz JV, Gálvez J, Muñoz-Collado C, García-Domenech R, Gimeno-Cardona C. J. Med. Chem. 1999; 42: 3308
  • 17 Lu IL, Mahindroo N, Liang PH, Peng YH, Kuo CJ, Tsai KC, Hsieh HP, Chao YS, Wu SY. J. Med. Chem. 2006; 49: 5154
  • 18 Winkler R, Hertweck C. ChemBioChem 2007; 8: 973
  • 19 Raether W, Hänel H. Parasitol Res. 2003; 90: S19
  • 20 Giomi D, Cordero FM, Machetti F. In Comprehensive Heterocyclic Chemistry III, Vol. 4. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Amsterdam: 2008: 365
  • 21 Grünanger P, Vita-Finzi P. Chem. Heterocycl. Compd. 1991; 49: 1
  • 22 Pinho e Melo TM. V. D. Curr. Org. Chem. 2005; 9: 925
  • 23 Zhang J, Liu X, Ma X, Wang R. Chem. Commun. 2013; 49: 9329
  • 24 Pascual A. Helv. Chim. Acta 1991; 74: 531
  • 25 Moccia M, Cortigiani M, Monasterolo C, Torri F, Fiandra CD, Fuller G, Kelly B, Adamo MF. A. Org. Process Res. Dev. 2015; 19: 1274
  • 26 Pérez JD, Wunderlin DA. J. Org. Chem. 1987; 52: 3637
  • 27 Granero GE, de Bertorello MM, Brinon MC. J. Chem. Res., Synop. 1999; 110
  • 28 Trukhacheva LA, Levina VI, Grigor’ev NB, Arzamastsev AP, Dalinger IL, Vatsadze IA, Popova GP, Shevelev SA, Granik VG. Russ. Chem. Bull. 2005; 54: 2813; Izv. Akad. Nauk, Ser. Khim. 2005, 2719
  • 29 Dannhardta G, Dominiak P, Laufe S. Arch. Pharm. (Weinheim, Ger.) 1991; 324: 141
  • 30 Sokolov SD, Yudintseva IM, Petrovskii PV, Kalyuzhnaya VG. J. Org. Chem. USSR (Engl. Transl.) 1971; 7: 2051 ; Zh. Org. Khim. USSR 1971, 7, 1979; Chem. Abstr. 1972, 76, 3738
  • 31 Sokolov SD, Egorova TN, Yudintseva IM. Chem. Heterocycl. Compd. (Engl. Transl.) 1974; 10: 516 ; Khim. Heterocycl. Soed. 1974, 10, 597; Chem. Abstr. 1974, 81, 63532
  • 32 Giannini G, Battistuzzi G. Bioorg. Med. Chem. Lett. 2015; 25: 462
  • 33 Baruchello R, Simoni D, Grisolia G, Barbato G, Marchetti P, Rondanin R, Mangiola S, Giannini G, Brunetti T, Alloatti D, Gallo G, Ciacci A, Vesci L, Castorina M, Milazzo FM, Cervoni ML, Guglielmi MB, Barbarino M, Foderà R, Pisano C, Cabri W. J. Med. Chem. 2011; 54: 8592
  • 34 Desimoni G, Minoli G. Tetrahedron 1968; 24: 4907
  • 35 Abushanab E, Lee DY, Goodman L. J. Heterocycl. Chem. 1973; 10: 181
  • 36 L’abbé G, Dyall L, Meersman K, Dehaen W. J. Chem. Soc., Perkin Trans. 2 1996; 2111
  • 37 Reiter LA. J. Org. Chem. 1987; 52: 2726
  • 38 Pascual A. Helv. Chim. Acta 1989; 72: 556
  • 39 Kusumi T, Nakanishi K. US 4288445, 1981 ; Chem. Abstr. 1981, 95, 209675
  • 40 Wells R, Moccia M, Adamo MF. A. Tetrahedron Lett. 2015; 55: 803
  • 41 Kochetkov NK, Khomutova ED, Karpeiskii MYa, Khorlin AYa. Zh. Obshch. Khim. USSR 1957; 27: 452 ; Chem. Abstr. 1957, 51, 85678
  • 42 Worrall DE, Lavin E. J. Am. Chem. Soc. 1939; 61: 104
  • 43 Gakh AA, Ugrak BI, Kiseleva VV. Russ. Chem. Bull. 1990; 39: 1883 ; Izv. Akad. Nauk, Ser. Khim. 1990, 2069
  • 44 Lynch BM, Shiu L. Can. J. Chem. 1965; 43: 2117
  • 45 Sokolov SD, Yudintseva IM. J. Org. Chem. USSR (Engl. Transl.) 1968; 4: 1988 ; Zh. Org. Khim. USSR 1968, 4, 2057; Chem. Abstr. 1969, 70, 28857
  • 46 Aiello E, Aiello S, Mingoia F, Bacchi A, Pelizzi G, Musiu C, Setzu MG, Pani A, Colla PL, Marongiu ME. Bioorg. Med. Chem. 2000; 8: 2719
  • 47 Almerico AM, Dattolo G, Cirrincione G, Presti G, Aiello E. J. Heterocycl. Chem. 1987; 24: 1309
  • 48 Peat AJ, Townsend C, McKay MC, Garrido D, Terry CM, Wilson JL. R, Thomson SA. Bioorg. Med. Chem. Lett. 2004; 14: 813
  • 49 Zhao H, Liu G, Xin Z, Serby MD, Pei Z, Szczepankiewicz BG, Hajduk PJ, Abad-Zapatero C, Hutchins CW, Lubben TH, Ballaron SJ, Haasch DL, Kaszubska W, Rondinone CM, Trevillyana JM, Jirousek MR. Bioorg. Med. Chem. Lett. 2004; 14: 5543
  • 50 Piaz VD, Panzauti S, Lacrimini P. Synthesis 1975; 664
  • 51 Kawai H, Tachi K, Tokunaga E, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2011; 50: 7803
  • 52 Haning H, Niewöhner U, Schenke T, Lampe T, Hillisch A, Bischoff E. Bioorg. Med. Chem. Lett. 2005; 15: 3900
  • 53 Semple G, Ren A, Fioravanti B, Pereira G, Calderon I, Choi K, Xiong Y, Shin YJ, Gharbaoui T, Sage CR, Morgan M, Xing C, Chu ZL, Leonard JN, Grottick AJ, Al-Shamma H, Liang Y, Demarest KT, Jones RM. Bioorg. Med. Chem. Lett. 2011; 21: 3134
  • 54 Deceuninck JA, Buffel DK, Hoornaert GJ. Tetrahedron Lett. 1980; 21: 3613
  • 55 Guo JL, Liu YY, Pei YZ. Chin. Chem. Lett. 2015; 26: 1283
  • 56 Nesi R, Chimichi S, Sarti-Fantoni P, Buzzi A, Giomi D. Heterocycles 1985; 23: 1465
  • 57 Nesi R, Giomi D, Papaleo S, Bracci S, Dapporto P. Synthesis 1988; 884
  • 58 Rall’ KB, Vil’davskaya AI, Petrov AA. Russ. Chem. Rev. 1975; 44: 373 ; Usp. Khim. 1975, 44, 744
  • 59 Jager Y, Viehe HG. Angew. Chem. Int. Ed. 1970; 9: 795 ; Angew. Chem. 1970, 82, 836
  • 60 Zhang MX, Eaton PE, Steele I, Gilardi R. Synthesis 2002; 2013
  • 61 Barański A, Kuba J, Cholewka E. Pol. J. Chem. 1990; 64: 753
  • 62 Verbruggen R, Viehe HG. Chimia 1975; 66: 350
  • 63 Brittelli DR, Boswell GA. Jr. J. Org. Chem. 1981; 46: 316
  • 64 Keana JF. W, Little GM. Heterocycles 1983; 20: 1291
  • 65 Rajappa S, Advani BG, Sreenivasan R. Synthesis 1974; 656
  • 66 Trogu E, Cecchi L, Sarlo FD, Guideri L, Ponticelli F, Machetti F. Eur. J. Org. Chem. 2009; 5971
  • 67 Barański A. Pol. J. Chem. 1986; 60: 107
  • 68 Barański A, Cholewka E. Pol. J. Chem. 1988; 62: 275
  • 69 Barański A, Cholewka E. Pol. J. Chem. 1989; 63: 483
  • 70 Barański A, Cholewka E. Pol. J. Chem. 1991; 65: 2061
  • 71 Grünanger P. Gazz. Chim. Ital. 1954; 84: 359 ; Chem. Abstr. 1955, 49, 28128
  • 72 Khisamutdinov GKh, Trusova TV. J. Org. Chem. USSR (Engl. Transl.) 1982; 18: 402 ; Zh. Org. Khim. USSR 1982, 18, 457; Chem. Abstr. 1982, 96, 162575
  • 73 Baeva LN, Demina LA, Trusova TV, Furin GG, Khisamutdinov GKh. J. Org. Chem. USSR (Engl. Transl.) 1980; 15: 2179 ; Zh. Org. Khim. USSR 1979, 15, 2408; Chem. Abstr. 1980, 92, 128782
  • 74 d’Alcontres GS, Vecchio GL. Gazz. Chim. Ital. 1960; 90: 347 ; Chem. Abstr. 1961, 55, 59463
  • 75 Baranski A. Chem. Heterocycl. Compd. 1985; 21: 153 ; Khim. Heterocycl. Soed. 1985, 21, 189
  • 76 Trusova TV, Malyuta NG, Khisamutdinov GKh. J. Org. Chem. USSR (Engl. Transl.) 1987; 23: 1187 ; Zh. Org. Khim. USSR 1987, 23, 1313; Chem. Abstr. 1988, 108, 150351
  • 77 Duranti E, Balsamini C, Spadoni G, Staccioli L. J. Org. Chem. 1988; 53: 2870
  • 78 Mechkov TsD, Sulimov IG, Usik NV, Mladenov I, Perekalin VV. J. Org. Chem. USSR (Engl. Transl.) 1980; 16: 1148 ; Zh. Org. Khim. USSR 1980, 16, 1328; Chem. Abstr. 1980, 93, 168170
  • 79 Fruttero R, Calvino R, Ferrarotti B, Gasco A, Aime S, Gobetto R, Chiari G, Calestani G. J. Chem. Soc., Perkin Trans. 2 1987; 523
  • 80 Takagi K, Tanaka M, Murakami Y, Ogura K, Ishii K, Morita H, Aotsuka T. J. Heterocycl. Chem. 1987; 24: 1003
  • 81 Iaroshenko VO, Gevorgyan A, Mkrtchyan S, Grigoryan T, Movsisyan E, Villinger A, Langer P. ChemCatChem 2015; 7: 316
  • 82 Nishiwaki N, Ogihara T, Takami T, Tamura M, Ariga M. J. Org. Chem. 2004; 69: 8382
  • 83 Clark J, Curphey M. J. Chem. Soc., Chem. Commun. 1974; 184
  • 84 Alberola A, Antolin LF, Gonzalez AM, Laguna MA, Pulido FJ. J. Heterocycl. Chem. 1986; 23: 1035
  • 85 Hopf H, Mourad AE, Jones PG. Beilstein J. Org. Chem. 2010; 6: 1
  • 86 Hansen JF, Easter JA, Eckert DA, Hunt KJ, Little DA. J. Heterocycl. Chem. 1994; 31: 281
  • 87 Ulpiane C. Gazz. Chim. Ital. 1916; 46: 1 ; Chem. Abstr. 1916, 10, 15627
  • 88 Sokolov SD, Ashkinadze LD, Chlenov MA, Kochetkov NK. Russ. Chem. Bull. 1963; 12: 858 ; Izv. Akad. Nauk SSSR., Ser. Khim. 1963, 946
  • 89 Nesi R, Chimichi S, Sio FD, Pepino R, Tedeschi P. Tetrahedron Lett. 1982; 23: 4397
  • 90 Sychkova LD, Shabarov YuS. J. Org. Chem. USSR (Engl. Transl.) 1976; 12: 2538 ; Zh. Org. Khim. USSR 1976, 12, 2630; Chem. Abstr. 1977, 86, 106448
  • 91 Sychkova LD, Kalinkina OL, Shabarov YuS. J. Org. Chem. USSR (Engl. Transl.) 1981; 17: 1277 ; Zh. Org. Khim. USSR 1981, 17, 1435; Chem. Abstr. 1981, 95, 202847
  • 92 Sychkova LD, Shabarov YuS. J. Org. Chem. USSR (Engl. Transl.) 1985; 21: 261 ; Zh. Org. Khim. USSR 1985, 21, 292; Chem. Abstr. 1985, 103, 22502
  • 93 Quilico A. Gazz. Chim. Ital. 1935; 65: 1203 ; Chem. Abstr. 1936, 30, 39290
  • 94 Quilico A, Fusco R, Rosnati V. Gazz. Chim. Ital. 1946; 76: 30 ; Chem. Abstr. 1947, 41, 2157
  • 95 Chang RK, Kim K. Tetrahedron Lett. 1996; 37: 7791
  • 96 Hauff JP, Tuaillon J, Perrot R. Helv. Chim. Acta 1978; 61: 1207
  • 97 Wieland H. Justus Liebigs Ann. Chem. 1903; 328: 227
  • 98 Wielund H, Bloch S. Justus Liebigs Ann. Chem. 1905; 340: 63
  • 99 Quilico A, Fusco R, Rosnati V. Gazz. Chim. Ital. 1946; 76: 87 ; Chem. Abstr. 1947, 41, 2158
  • 100 Dell’Erba C, Novi M, Petrillo G, Stagnaro P. J. Heterocycl. Chem. 1994; 31: 861
  • 101 Rossi S, Duranti E. Tetrahedron Lett. 1973; 14: 485
  • 102 Diamantini G, Duranti E, Tontini A. Synthesis 1993; 1104
  • 103 Dighe SU, Mukhopadhyay S, Kolle S, Kanojiya S, Batra S. Angew. Chem. Int. Ed. 2015; 54: 10926 ; Angew. Chem. 2015, 127, 11076
  • 104 Ovchinnikov IV, Makhova NN, Khmel’nitskii LI. Mendeleev Commun. 1993; 3: 210
  • 105 Ovchinnikov IV, Makhova NN, Khmel’nitskii LI. Russ. Chem. Bull. 1995; 44: 702 ; Izv. Akad. Nauk, Ser. Khim. 1995, 722
  • 106 Ovchinnikov IV, Popov NA, Makhova NN, Khmel’nitskii LI, Shlyapochnikov VA. Mendeleev Commun. 1995; 5: 231
  • 107 Fershtat LL, Khakimov DV, Makhova NN. Russ. Chem. Bull. 2015; 64: 415 ; Izv. Akad. Nauk, Ser. Khim. 2015, 415
  • 108 Fershtat LL, Ovchinnikov IV, Makhova NN. Tetrahedron Lett. 2014; 55: 2398
  • 109 Pelkey ET, Barden TC, Gribble GW. Tetrahedron Lett. 1999; 40: 7615
  • 110 Bravo P, Gaudiano G. Gazz. Chim. Ital. 1966; 96: 454 ; Chem. Abstr. 1966, 65, 12253
  • 111 Baum K, Tzeng D. J. Org. Chem. 1985; 50: 2739
  • 112 Golod EL, Novatskii GN, Bagal LI. Zh. Org. Khim. USSR 1973; 9: 1111 ; Chem. Abstr. 1973, 79, 78662
  • 113 Khisamutdinov GK, Lyapin NM, Nikitin VG, Slovetskii VI, Fainzil’berg AA. Russ. Chem. Bull. 2009; 58: 2178 ; Izv. Akad. Nauk, Ser. Khim. 2009, 2113
  • 114 Volkova YA, Averina EB, Grishin YK, Bruheim P, Kuznetsova TS, Zefirov NS. J. Org. Chem. 2010; 75: 3047
  • 115 Averina EB, Samoilichenko YV, Volkova YA, Grishin YK, Rybakov VB, Kutateladze AG, Elyashberg ME, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2012; 53: 1472
  • 116 Volkova YA, Averina EB, Vasilenko DA, Sedenkova KN, Grishin YK, Bruheim P, Kuznetsova TS, Zefirov NS. J. Org. Chem. 2019; DOI: 10.1021/acs.joc.8b03086.
  • 117 Barański A. Pol. J. Chem. 1982; 56: 1585
  • 118 Gericke R, Beier N, Wilm C. WO 2003051866A1, 2003 ; Chem. Abstr. 2003, 139, 53034
  • 119 Averina EB, Vasilenko DA, Samoilichenko YV, Grishin YK, Rybakov VB, Kuznetsova TS, Zefirov NS. Synthesis 2014; 46: 1107
  • 120 Averina EB, Vasilenko DA, Gracheva YA, Grishin YK, Rybakov VB, Radchenko EV, Burmistrov VV, Butov GM, Neganova ME, Serkova TP, Redkozubova OM, Shevtsova EF, Milaeva ER, Kuznetsova TS, Zefirov NS. Bioorg. Med. Chem. 2016; 24: 712
  • 121 Vasilenko DA, Averina EB, Zefirov NA, Wobith B, Grishin YK, Rybakov VB, Zefirova ON, Kuznetsova TS, Kuznetsov SA, Zefirov NS. Mendeleev Commun. 2017; 27: 228