Synthesis 2019; 51(07): 1545-1560
DOI: 10.1055/s-0037-1611708
feature
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Formation of Substituted Tetrahydropyrans: Mechanistic Insights and Structural Revision of Natural Products

Franco Della-Felice
a  University of Campinas, Institute of Chemistry, 13084-971, Campinas, SP, Brazil   Email: pilli@iqm.unicamp.br
,
Francisco F. de Assis
a  University of Campinas, Institute of Chemistry, 13084-971, Campinas, SP, Brazil   Email: pilli@iqm.unicamp.br
,
Ariel M. Sarotti
b  Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002 LRK, Rosario, Argentina
,
Ronaldo A. Pilli*
a  University of Campinas, Institute of Chemistry, 13084-971, Campinas, SP, Brazil   Email: pilli@iqm.unicamp.br
› Author Affiliations
The authors are grateful to FAPESP (grants 2013/07607-8, 2014/25474-8, and 2016/12541-4) and CONICET (PIP 11220130100660CO) for financial support.
Further Information

Publication History

Received: 17 September 2018

Accepted after revision: 26 November 2018

Publication Date:
29 January 2019 (online)

This work is dedicated to Professor Albert J. Kascheres for his guidance and positive example to one of us (R.A.P.).

Abstract

A comprehensive study on the stereochemical outcome of palladium-catalyzed formation of 2,4,6-trisubstituted tetrahydropyrans through cyclization of the corresponding allylic acetates using both Pd(0) and Pd(II) catalysts is presented. We have found that the stereochemical outcome of this cyclization is dependent not only on the ­stereochemistry of the acyclic precursor but also on the nature of the palladium catalyst. These results were applied to the total synthesis of the putative structure of cryptoconcatone H. Experimental and computational DP4+ NMR results were used to assess the structures proposed for cryptoconcatones K and L.

Supporting Information

 
  • References


    • For selected reviews on the synthesis of pyrans, see:
    • 1a Clarke PA, Santos S. Eur. J. Org. Chem. 2006; 2045
    • 1b Larrosa I, Romea P, Urpi F. Tetrahedron 2008; 64: 2683
    • 1c Smith AB. III, Fox RJ, Razler TM. Acc. Chem. Res. 2008; 41: 675
    • 1d Olier C, Kaafarani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
    • 1e Han X, Peh G, Floreancig PE. Eur. J. Org. Chem. 2013; 1193
    • 1f Nasir NM, Ermanis K, Clarke PA. Org. Biomol. Chem. 2014; 12: 3323
    • 1g Fuwa H. Mar. Drugs 2016; 14: 65
    • 1h Zhang Z, Tong R. Synthesis 2017; 49: 4899

      For pioneering work on this subject, see for example:
    • 2a Stork G, Poirier JM. J. Am. Chem. Soc. 1983; 105: 1073
    • 2b Trost BM, Tenaglia A. Tetrahedron Lett. 1988; 29: 2729
    • 2c Semmelhack MF, Kim CR, Dobler W, Meier M. Tetrahedron Lett. 1989; 30: 4928
    • 3a Trost BM, Machacek MR. Angew. Chem. Int. Ed. 2002; 41: 4693
    • 3b Trost BM, Machacek MR, Faulk BD. J. Am. Chem. Soc. 2006; 128: 6745
  • 4 Hansen EC, Lee D. Tetrahedron Lett. 2004; 45: 7151
    • 5a Uenishi J, Ohmi M, Ueda A. Tetrahedron: Asymmetry 2005; 16: 1299
    • 5b Uenishi J, Ohmi M. Angew. Chem. Int. Ed. 2005; 44: 2756
    • 5c Kawai N, Lagrange J.-M, Ohmi M, Uenishi J. J. Org. Chem. 2006; 71: 4530
    • 5d Kawai N, Hande SM, Uenishi J. Tetrahedron 2007; 63: 9049
    • 5e Kawai N, Lagrange J.-M, Uenishi J. Eur. J. Org. Chem. 2007; 2808
    • 5f Uenishi J, Vikhe YS, Kawai N. Chem. Asian J. 2008; 3: 473
    • 5g Ida A, Hoshiya N, Uenishi J. Heterocycles 2015; 90: 1082
  • 6 Hanessian S, Focken T, Oza R. Tetrahedron 2011; 67: 9870
  • 7 Shin I, Wang G, Krische MJ. Chem. Eur. J. 2014; 20: 13382

    • For selected recent examples of revised structures of natural products, see:
    • 8a Molinski TF, Morinaka BI. Tetrahedron 2012; 68: 9307
    • 8b Carneiro VM. T, Avila CM, Balunas MJ, Gerwick WH, Pilli RA. J. Org. Chem. 2014; 79: 630
    • 8c Willwacher J, Heggen B, Wirtz C, Thiel W, Fürstner A. Chem. Eur. J. 2015; 21: 10416
    • 8d Ren Z, Hao Y, Hu X. Org. Lett. 2016; 18: 4958
    • 9a Maier ME. Nat. Prod. Rep. 2009; 26: 1105
    • 9b Nicolaou KC, Snyder SA. Angew. Chem. Int. Ed. 2005; 44: 1012
    • 9c Yoo H.-D, Nam S.-J, Chin Y.-M, Kim M.-S. Arch. Pharmacal. Res. 2016; 39: 143
    • 9d Della-Felice F, Pilli RA, Sarotti MA. J. Braz. Chem. Soc. 2018; 29: 1041
  • 10 Della-Felice F, Sarotti AM, Pilli RA. J. Org. Chem. 2017; 82: 9191
    • 11a Yang B.-Y, Kong L.-Y, Wang X.-B, Zhang Y.-M, Li R.-J, Yang M.-H, Luo J.-G. J. Nat. Prod. 2016; 79: 196
    • 11b Yang B.-Y, Shi Y.-M, Luo J.-G, Kong L.-Y. Nat. Prod. Res. 2017; 31: 1409
    • 12a Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14891
    • 12b Gao X, Townsend IA, Krische MJ. J. Org. Chem. 2011; 76: 2350
    • 12c Shin I, Hong S, Krische MJ. J. Am. Chem. Soc. 2016; 138: 14246
    • 13a Hassan A, Lu Y, Krische MJ. Org. Lett. 2009; 11: 3112
    • 13b Dechert-Schmitt A.-MR, Schmitt DC, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 3195
  • 14 Gao Y, Klunder JM, Hanson RM, Masamune H, Ko SY, Sharpless KB. J. Am. Chem. Soc. 1987; 109: 5765
  • 15 When a mixture of products was formed, the yield of each component was estimated from the mass and the molar ratio observed in the 1H NMR spectrum of chromatographically purified compounds.

    • See for example:
    • 16a Mackenzie PB, Whelan J, Bosnich B. J. Am. Chem. Soc. 1985; 107: 2046
    • 16b Auburn PR, Mackenzie PB, Bosnich B. J. Am. Chem. Soc. 1985; 107: 2033
    • 16c Granberg KL, Baeckvall JE. J. Am. Chem. Soc. 1992; 114: 6858
    • 16d Trost BM, Krische MJ, Radinov R, Zanoni G. J. Am. Chem. Soc. 1996; 118: 6297
  • 17 Hansen and Lee (ref. 4) and Uenishi and co-workers (ref. 5b) also mentioned during their studies the formation of a side product coming from beta-hydride elimination of the Pd-π-allyl complex
  • 18 The (6′S) configuration in 21 was defined with Kishi’s method after deacetylation, observing C-4′ at 68.1 ppm in CD3OD, corresponding to a syn/anti motif. See: Kobayashi Y, Tan C.-H, Kishi Y. Helv. Chim. Acta 2000; 83: 2562
  • 19 The yield estimated by molar ratio (1H NMR) is after purification. The starting materials 9, 10, 19, and 20 were employed as a 95:5 diastereoisomeric mixture at the benzylic position, and the reported yields refer to the excess of the by-product formed when considering the diastereoisomeric ratio in the starting materials
  • 20 Ghebreghiorgis T, Kirk BH, Aponick A, Ess DH. J. Org. Chem. 2013; 78: 7664
    • 21a Saielli G, Bagno A. Org. Lett. 2009; 11: 1409
    • 21b Wang C.-X, Chen G.-D, Feng C.-C, He R.-R, Qin S.-Y, Hu D, Chen H.-R, Liu X.-Z, Yao XS, Gao H. Chem. Commun. 2016; 1250
    • 21c After submission of this work, a total synthesis of putative structure 4 was also reported by: Csókás D, Bates R. W. Synlett 2019; 30: 178
    • 22a Lodewyk MW, Siebert MR, Tantillo DJ. Chem. Rev. 2012; 112: 1839
    • 22b Grimblat N, Sarotti AM. Chem. Eur. J. 2016; 22: 12246
  • 23 Smith SG, Goodman JM. J. Am. Chem. Soc. 2010; 132: 12946
    • 24a Grimblat N, Zanardi MM, Sarotti AM. J. Org. Chem. 2015; 80: 12526
    • 24b Zanardi MM, Suárez AG, Sarotti AM. J. Org. Chem. 2017; 82: 1873
    • 25a Evans RH. Jr, Ellestad GA, Kunstmann MP. Tetrahedron Lett. 1969; 22: 1791
    • 25b Murayana T, Sugiyama T, Yamashita K. Agric. Biol. Chem. 1987; 51: 2055
    • 25c Yang Z-C, Jiung X-B, Wang Z-M, Zhou W-S. J. Chem. Soc., Perking Trans. I, 1997; 317
  • 26 Zhao W, Kotik M, Iacazio G, Archelas A. Adv. Synth. Catal. 2015; 357: 1895
    • 27a Lehmann J, Lloyd-Jones GC. Tetrahedron 1995; 51: 8863
    • 27b Gärtner M, Mader S, Seehafer K, Helmchen G. J. Am. Chem. Soc. 2011; 133: 2072
    • 27c Hui L, Yan L, Zhong-Liu W. Chem. Commun. 2011; 2610
    • 28a Chen P, Xiang P. Tetrahedron Lett. 2011; 52: 5758
    • 28b Marion N, Gealageas N, Nolan SP. Org. Lett. 2007; 9: 2653
  • 29 Chloroform as reference at δ = 7.26 ppm (1H NMR) and δ = 77.26 ppm (13C NMR), as described for the natural product (ref. 11a)