CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 459-463
DOI: 10.1055/s-0037-1611674
letter
Copyright with the author

Origins of Contrasteric π-Facial Selectivity in Epoxidations of Encumbered Tetrahydropyridines by a Bifunctional Peracid

,
Sining Wang
,
This work was supported by the National Science Foundation (Grant CHE-1059084 to K. N. H.). XSEDE is supported by the National Science Foundation (Grant OCI-1053575).
Further Information

Publication History

Received: 01 December 2018

Accepted after revision: 21 January 2019

Publication Date:
25 January 2019 (online)


Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

The origins of contrasteric diastereoselectivity in the epoxidation of encumbered tetrahydropyridines have been elucidated via density functional theory (DFT) calculations. A strong energetic preference for OH···N hydrogen bonding was found for epoxidation transition states of the unsubstituted tetrahydropyridine. For hexasubstituted tetrahydropyridines, the diastereofacial selectivity is dictated by both the strong OH···N hydrogen bonding and the conformational preference of the tetrahydropyridine substrate.

Supporting Information

 
  • References and Notes

  • 1 Roughley SD, Jordan AM. J. Med. Chem. 2011; For an analysis of the prevalence of nitrogen heterocycles in pharmaceuticals, see: 54: 3451

    • For perspectives on nonplanar nitrogen heterocycles in drug discovery, see:
    • 2a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 2b Walters WP, Green J, Weiss JR, Murcko MA. J. Med. Chem. 2011; 54: 6405
    • 2c Ritchie TJ, Macdonald SJ. F. Drug Discovery Today 2009; 14: 1011

      For recent examples of stereoselective nitrogen heterocycle synthesis, see:
    • 3a Huang X, Li X, Xie X, Harms K, Riedel R, Meggers E. Nat. Commun. 2017; 8: 2245
    • 3b Feng J.-J, Lin T.-Y, Zhu C.-Z, Wang H, Wu H.-H, Zhang J. J. Am. Chem. Soc. 2016; 138: 2178
    • 3c Munnuri S, Adebesin AM, Paudyal MP, Yousufuddin M, Dalipe A, Falck JR. J. Am. Chem. Soc. 2017; 139: 18288
    • 3d Tait MB, Butterworth S, Clayden J. Org. Lett. 2015; 17: 1236
    • 3e Ballete R, Perez M, Proto S, Amat M, Bosch J. Angew. Chem. Int. Ed. 2014; 53: 6202
    • 3f Duttwyler S, Chen S, Takase MK, Wiberg KB, Bergman RG, Ellman JA. Science 2013; 339: 678
    • 3g Duttwyler S, Chen S, Lu C, Mercado BQ, Bergman RG, Ellman JA. Angew. Chem. Int. Ed. 2014; 53: 3877
    • 3h Chen S, Bacauanu V, Knecht T, Mercado BQ, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2016; 138: 12664
  • 4 Hoveyda AH, Evans DA, Fu GC. Chem. Rev. 1993; For a review of substrate-directed reactions, see: 93: 1307

    • For computational studies on hydroxyl-directed epoxidations, see:
    • 5a Bach RD, Estevez CM, Winter JE, Glukhovtsev MN. J. Am. Chem. Soc. 1998; 120: 680
    • 5b Adam W, Bach RD, Dmitrenko O, Saha-Moeller CR. J. Org. Chem. 2000; 65: 6715
    • 5c Freccero M, Gandolfi R, Sarzi-Amade M, Rastelli A. J. Org. Chem. 1999; 64: 3853
    • 5d Freccero M, Gandolfi R, Sarzi-Amade M, Rastelli A. J. Org. Chem. 2000; 65: 2030
    • 5e Freccero M, Gandolfi R, Sarzi-Amade M, Rastelli A. J. Org. Chem. 2000; 65: 8948
    • 6a Cheong PH.-Y, Yun H, Danishefsky SJ, Houk KN. Org. Lett. 2006; 8: 1513
    • 6b Wang H, Kohler P, Overman LE, Houk KN. J. Am. Chem. Soc. 2012; 134: 16054

      For recent examples, see:
    • 7a Aggarwal VK, Fang GY. Chem. Commun. 2005; 3448
    • 7b Grishina GV, Borisenko AA, Veselov IS, Petrenko AM. Russ. J. Org. Chem. 2005; 41: 272
    • 7c Brennan MB, Claridge TD. W, Compton RG, Davies SG, Fletcher AM, Henstridge MC, Hewings DS, Kurosawa W, Lee JA, Roberts PM, Schoonen AK, Thomson JE. J. Org. Chem. 2012; 77: 7241
    • 7d Brennan MB, Davies SG, Fletcher AM, Lee JA, Roberts PM, Russell AJ, Thomson JE. Aust. J. Chem. 2015; 68: 610
    • 7e Da Silva PintoS, Davies SG, Fletcher AM, Roberts PM, Thomson JE. Synthesis 2018; 50: 64
    • 7f Brambilla M, Brennan MB, Csatayová K, Davies SG, Fletcher AM, Kennett AM. R, Lee JA, Roberts PM, Russell AJ, Thomson JE. J. Org. Chem. 2017; 82: 10297
  • 8 For kinetic studies on stereoselective oxidations of olefins directed by nitrogen-containing moieties, see ref. 7c,f.
  • 9 Chen S, Mercado BQ, Bergman RG, Ellman JA. J. Org. Chem. 2015; 80: 6660
  • 10 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09 . Gaussian Inc; Wallingford, CT: 2009
  • 11 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 12 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 13 Legault CY. CYLview, 1.0b; Université de Sherbrooke, Québec. 2009 http://www.cylview.org
    • 14a Bach RD, Glukhovtsev MN, Gonzales C, Marquez M, Estevez CM, Baboul AG, Schlegel HB. J. Phys. Chem. A 1997; 101: 6092
    • 14b Singleton DA, Merrigan SR, Liu J, Houk KN. J. Am. Chem. Soc. 1997; 119: 3385
    • 14c Houk KN, Liu J, DeMello NC, Condroski KR. J. Am. Chem. Soc. 1997; 119: 10147
    • 15a Liu F, Liang Y, Houk KN. Acc. Chem. Res. 2017; 50: 2297
    • 15b Bickelhaupt FM, Houk KN. Angew. Chem. Int. Ed. 2017; 56: 10070