Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(13): 2648-2659
DOI: 10.1055/s-0037-1611562
DOI: 10.1055/s-0037-1611562
feature
Vicinal Dichlorination of o-Vinylbiphenyls and the Synthesis of 9-(Arylmethyl)fluorenes via Tandem Friedel–Crafts Alkylations
This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant No. 418602-2013).Further Information
Publication History
Received: 25 March 2019
Accepted after revision: 02 May 2019
Publication Date:
28 May 2019 (online)
Abstract
Reacting ortho-vinylbiphenyls with (dichloroiodo)benzene (PhICl2) gives vicinal dichlorides, rapidly, and in excellent yield at room temperature. Treating the vic-dichlorides with 50 mol% AlCl3 in the presence of arene nucleophiles results in sequential intramolecular and intermolecular Friedel–Crafts alkylations to generate 9-(arylmethyl)fluorene derivatives. The dichlorination and alkylation reactions are operationally simple and tolerant of a variety of functional groups and substitution patterns, and give the products in moderate to excellent yield.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611562.
- Supporting Information
-
References
- 1 Willgerodt C. J. Prakt. Chem. 1886; 33: 154
- 2a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 2b Zhdankin V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; Chichester: 2014
- 2c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 2d Wirth T. Hypervalent Iodine Chemistry . Springer Verlag; Berlin: 2016
- 2e The Chemistry of Hypervalent Halogen Compounds. In PATAI’s Chemistry of Functional Groups. Marek I, Olofsson B, Rappoport Z. Wiley; New York: 2019
- 3 Lucas HJ, Kennedy ER. Org. Synth. 1942; 22: 69
- 4 Zhao XF, Zhang C. Synthesis 2007; 551
- 5a Montanari V, Resnati G. Tetrahedron Lett. 1994; 35: 8015
- 5b Bravo P, Montanari V, Resnati G, Desmarteau DD. J. Org. Chem. 1994; 59: 6093
- 5c Yusubov MS, Drygunova LA, Zhdankin VV. Synthesis 2004; 2289
- 5d Podgorsek A, Jurisch M, Stavber S, Zupan M, Iskra J, Gladysz JA. J. Org. Chem. 2009; 74: 3133
- 6a Yusubov MS, Zhdankin VV. Mendeleev Commun. 2010; 20: 185
- 6b Chen JM, Zeng XM, Middleton K, Zhdankin VV. Tetrahedron Lett. 2011; 52: 1952
- 8 Romero RM, Wöste TH, Muñiz K. Chem. Asian J. 2014; 9: 972
- 9a Zhao Z, Racicot L, Murphy GK. Angew. Chem. Int. Ed. 2017; 56: 11620
- 9b Zhao Z, Britt LH, Murphy GK. Chem. Eur. J. 2018; 24: 17002
- 9c Zhao Z, Murphy GK. Beilstein J. Org. Chem. 2018; 14: 796
- 10 Depken C, Krätzschmar F, Breder A. Org. Chem. Front. 2016; 3: 314
- 11a Singh FV, Wirth T. Synthesis 2013; 45: 2499
- 11b Brown M, Kumar R, Rehbein J, Wirth T. Chem. Eur. J. 2016; 22: 4030
- 12a Ishibashi Y, Miyata K, Kitamura M. Eur. J. Org. Chem. 2010; 2010: 4201
- 12b Sakai N, Nakajima T, Yoneda S, Konakahara T, Ogiwara Y. J. Org. Chem. 2014; 79: 10619
- 12c Boo BH, Lee M, Jeon K.-S, Kim S.-J. J. Phys. Chem. A 2014; 118: 2269
- 13a Greenhow EJ, McNeil D, White EN. J. Chem. Soc. 1952; 986
- 13b Gualtieri F, Teodori E, Bellucci C, Pesce E, Piacenza G. J. Med. Chem. 1985; 28: 1621
- 14a Claxton GP, Grisar JM, Roberts EM, Fleming RW. J. Med. Chem. 1972; 15: 500
- 14b Dow RL. WO9221660A1, 1992
- 14c Hamilton GS, Mewshaw RE, Bryant CM, Feng Y, Endemann G, Madden KS, Janczak JE, Perumattam J, Stanton LW, Yang XJ, Yin ZW, Venkataramen B, Liu DY. J. Med. Chem. 1995; 38: 1650
- 14d Mahboobi S, Sellmer A, Pongratz H, Leonhardt M, Kraemer O, Boehmer F.-D, Kelter G. WO2016020369A1, 2016
- 15a Fleckenstein CA, Plenio H. Organometallics 2008; 27: 3924
- 15b Fleckenstein CA, Kadyrov R, Plenio H. Org. Process Res. Dev. 2008; 12: 475
- 16a de Frutos Ó, Granier T, Gómez-Lor B, Jiménez-Barbero J, Monge Á, Gutiérrez-Puebla E, Echavarren AM. Chem. Eur. J. 2002; 8: 2879
- 16b Kwag G, Park E, Lee SN. J. Appl. Polym. Sci. 2005; 96: 1335
- 17 Formation of 9-tolyl-9,10-dihydrophenanthrene was also considered. Given the symmetry elements found in the 13C NMR spectrum of 5a, and that the spectra matched previous reports (see ref. 20), we deemed its structure to be correct. For reference, the spectra of 9-tolyl-9,10-dihydrophenanthrene can be found here: Goerner RN, Cote PN, Vittimberga BM. J. Org. Chem. 1977; 42: 19
- 18a Yamato T, Komine M, Matsuo K. J. Chem. Res., Synop. 1997; 82
- 18b Yamato T, Komine M, Nagano Y. Org. Prep. Proced. Int. 1997; 29: 300
- 18c Comprehensive Organic Synthesis, 1st ed. Trost BM, Fleming I. Pergamon; Oxford: 1991
- 18d Yamato T, Sakaue N, Shinoda N, Matsuo K. J. Chem. Soc., Perkin Trans. 1 1997; 1193
- 19 Ohwada T. J. Am. Chem. Soc. 1992; 114: 8818
- 20 Chen J, Li Y, Li S, Liu J, Zheng F, Zhang Z, Xu Q. Green Chem. 2017; 19: 623
HVI-mediated reactions of styryl derivatives are prone to 1,2-phenyl shifts, which is also possible here; for further information see: