Subscribe to RSS
DOI: 10.1055/s-0037-1611370
2-[18F]Fluorophenylalanine: Synthesis by Nucleophilic 18F-Fluorination and Preliminary Biological Evaluation
This work was supported by DFG Grant ZL 65/1-1.Publication History
Received: 02 October 2018
Accepted after revision: 05 November 2018
Publication Date:
04 January 2019 (online)
§ These authors contributed equally.
Abstract
2-[18F]Fluorophenylalanine (2-[18F]FPhe), a promising PET tracer for imaging of cerebral infarction and tumors, was efficiently prepared from an easily accessible iodonium salt precursor using Cu-mediated radiofluorination under ‘low base’ or ‘minimalist’ conditions. Whereas significant racemization was initially observed if the ‘minimalist’ protocol was applied for radiolabeling, it was completely suppressed by the careful adjustment of 18F– preprocessing. The initial biological study revealed a higher uptake of 2-[18F]FPhe in different tumor cells in comparison to that of [18F]FET. In contrast to 4-[18F]FPhe, which suffered from rapid defluorination in vivo, 2-[18F]FPhe demonstrated a sufficient in vivo stability. Conclusively, 2-[18F]FPhe is a promising PET probe that is now readily available using Cu-mediated radiofluorination under ‘minimalist’ or ‘low base’ conditions. The simplicity of the translation of the proposed procedures to automated synthesis modules allows a broad biological evaluation of 2-[18F]FPhe. Notably, a novel protocol for the preparation of N-Boc protected amino acids from the respective Ni-Schiff base complexes was developed that avoided application of strongly acidic conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611370.
- Supporting Information
-
References
- 1 Sánchez-Crespo A, Andreo P, Larsson SA. Eur. J. Nucl. Med. Mol. Imaging 2004; 31: 44
- 2 Langen KJ, Galldiks N, Hattingen E, Shah NJ. Nat. Rev. Neurol. 2017; 13: 279
- 3 Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. J. Nucl. Med. 1999; 40: 1367
- 4 Bodsch W, Coenen HH, Stöcklin G, Takahashi K, Hossmann KA. J. Neurochem. 1988; 50: 979
- 5a Zlatopolskiy BD, Zischler J, Krapf P, Zarrad F, Urusova EA, Kordys E, Endepols H, Neumaier B. Chem. Eur. J. 2015; 21: 5972
- 5b Zischler J, Krapf P, Richarz R, Zlatopolskiy BD, Neumaier B. Appl. Radiat. Isot. 2016; 115: 133
- 6 Ichiishi N, Brooks AF, Topczewski JJ, Rodnick ME, Sanford MS, Scott PJ. Org. Lett. 2014; 16: 3224
- 7 Murakami M, Takahashi K, Kondo Y, Mizusawa S, Nakamichi H, Sasaki H, Hagami E, Iida H, Kanno I, Miura S, Uemura K. J. Labelled Compd. Radiopharm. 1988; 25: 773
- 8 Ogawa T, Miura S, Murakami M, Tida H, Hatazawa J, Inugami A, Kanno I, Yasui N, Sasajima T, Uemura K. Eur. J. Nucl. Med. 1996; 23: 889
- 9 Ito H, Hatazawa J, Murakami M, Miura S, Iida H, Bloomfield PM, Kanno I, Fukuda H, Uemura K. J. Nucl. Med. 1995; 36: 1232
- 10 Hatazawa J, Itoh H, Shimosegawa E, Kanno I, Murakami M, Miura S, Iida H, Okudera T, Inugami A, Ogawa T, Fujita H, Satoh Y, Nagata K, Hirata Y, Uemura K. Ann. Nucl. Med. 1994; 8: 213
- 11a Wang Y, Song X, Wang J, Moriwaki H, Soloshonok VA, Liu H. Amino Acids 2017; 49: 1487
- 11b Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA. Amino Acids 2013; 45: 691
- 11c Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA. Amino Acids 2013; 45: 1017
- 11d Aceña JL, Sorochinsky AE, Soloshonok VA. Amino Acids 2014; 46: 2047
- 12 Zlatopolskiy BD, Zischler J, Schäfer D, Urusova EA, Guliyev M, Bannykh O, Endepols H, Neumaier B. J. Med. Chem. 2018; 61: 189
- 13 Qin L, Hu B, Neumann KD, Linstad EJ, McCauley K, Veness J, Kempinger JJ, DiMagno SG. Eur. J. Org. Chem. 2015; 5919
- 14 Zischler J, Kolks N, Modemann D, Neumaier B, Zlatopolskiy BD. Chemistry 2017; 23: 3251
- 15 Richarz R, Krapf P, Zarrad F, Urusova EA, Neumaier B, Zlatopolskiy BD. Org. Biomol. Chem. 2014; 12: 8094
- 16 Schäfer D, Weiß P, Ermert J, Castillo Meleán J, Zarrad F, Neumaier B. Eur. J. Org. Chem. 2016; 4621
- 17 Barnes DM, Barkalow J, Plata DJ. Org. Lett. 2009; 11: 273
- 18 Nic M., Jirat J., Kosata B.; IUPAC Goldbook; https://goldbook.iupac.org/src/src_PAC1994662513.html (01.08.2018)
- 19 Kuik WJ, Kema IP, Brouwers AH, Zijlma R, Neumann KD, Dierckx RA. J. O, DiMagno SG, Elsinga PH. J. Nucl. Med. 2015; 56: 106
- 20 Amira A, K’tir H, Berredjem M, Aouf N.-E. Monatsh. Chem. 2013; 145: 509
- 21 Pozdnev VF. Int. J. Pept. Protein Res. 1992; 40: 407
- 22 Huihui KM, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LK, Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
- 23 Koch S, Schollmeyer D, Lowe H, Kunz H. Chemistry 2013; 19: 7020
- 24 Belokon’ YN, Tararov VI, Maleev VI, Savel’eva TF, Ryzhov MG. Tetrahedron: Asymmetry 1998; 9: 4249
- 25 Hamacher K, Coenen HH. Appl. Radiat. Isot. 2002; 57: 853
- 26 Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. Phys. Med. Biol. 1998; 43: 1001
- 27 Vollmar S, Hampl J, Kracht L, Herholz K. Advances in Medical Engineering, Springer Proceedings in Physics 2007; 114: 98