Synthesis
DOI: 10.1055/s-0037-1611064
review
© Georg Thieme Verlag Stuttgart · New York

Protodepalladation as a Strategic Elementary Step in Catalysis

a  School of Chemistry, NUI Galway, University Road, Galway H91 TK33, Ireland
b  Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States   Email: keary@scripps.edu
,
b  Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States   Email: keary@scripps.edu
› Author Affiliations
We gratefully acknowledge The Scripps Research Institute (TSRI) and the National Institute of Health (1R35GM125052) for funding and the DAAD for a postdoctoral fellowship (M.L.O.).
Further Information

Publication History

Received: 15 July 2018

Accepted after revision: 19 September 2018

Publication Date:
29 October 2018 (eFirst)

Abstract

Protodepalladation is the redox-neutral conversion of a C–Pd(II) bond into a C–H bond via reaction with a Brønsted acid. It is the microscopic reverse of Pd(II)-mediated C–H cleavage. In the context of catalytic reaction development, protodepalladation offers a means of converting organopalladium(II) intermediates into organic products without a change in oxidation state at the metal center. Hence, when integrated into catalytic cycles, it can be a uniquely enabling elementary step. The goal of this review is to provide an overview of protodepalladation, including exploration of different reaction types, discussion of literature examples, and analysis of mechanistic features. Our hope is that this review will stimulate other researchers in the field to pursue new applications of this underexploited step in catalysis.

1 Introduction

2 Mechanistic Considerations

3 Examples of Synthetically Enabling Protodepalladation Reactions

3.1 Alkenylpalladium Species

3.2 Arylpalladium Species

3.3 Palladium Enolates

3.4 Alkylpalladium Species

4 Conclusion

 
  • References

  • 1 Current affiliation: School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland

    • For reviews, see:
    • 2a Arndtsen BA. Bergman RG. Mobley TA. Peterson TH. Acc. Chem. Res. 1995; 28: 154
    • 2b Jia C. Kitamura T. Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 2c Labinger JA. Bercaw JE. Nature (London) 2002; 417: 507
    • 2d Crabtree RH. J. Organomet. Chem. 2004; 689: 4083
    • 2e Campeau L.-C. Stuart DR. Fagnou K. Aldrichimica Acta 2007; 40: 35
    • 2f Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 2g Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2h Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 2i Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 2j Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 2k Liu B. Hu F. Shi B.-F. ACS Catal. 2015; 5: 1863
    • 2l Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 2m Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 2n Davies HM. L. Morton D. J. Org. Chem. 2016; 81: 343

    • For thematic issues on this topic, see:
    • 2o Themed issue on C–H Functionalization in Organic Synthesis: Davies, H. M. L.; Du Bois, J.; Yu, J.-Q. (Eds.) Chem. Soc. Rev. 2011, 40, 1845–2040.
    • 2p Themed issue on CH Activation: Crabtree, R. H.; Lei, A. W. (Eds.) Chem. Rev. 2017, 117, 8481–9520.

      For recent examples, see:
    • 3a Plata RE. Hill DE. Haines BE. Musaev DG. Chu L. Hickey DP. Sigman MS. Yu J.-Q. Blackmond DG. J. Am. Chem. Soc. 2017; 139: 9238
    • 3b Deb A. Hazra A. Peng Q. Paton RS. Maiti D. J. Am. Chem. Soc. 2017; 139: 763
    • 3c Mai BK. Kim Y. Inorg. Chem. 2016; 55: 9822
    • 3d Kefalidis CE. Davi M. Holstein PM. Clot E. Baudoin O. J. Org. Chem. 2014; 79: 11903

    • For a tutorial review on how to interpret KIE data in C–H activation, see:
    • 3e Simmons EM. Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
    • 4a Timmins GS. Expert Opin. Ther. Pat. 2017; 27: 1353
    • 4b Atzrodt J. Derdau V. Kerr WJ. Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
    • 4c Tung R. Innovations Pharm. Technol. 2010; 32: 24
    • 5a Korsager S. Taaning RH. Lindhardt AT. Skrydstrup T. J. Org. Chem. 2013; 78: 6112
    • 5b Ma S. Villa G. Thuy-Boun PS. Homs A. Yu J.-Q. Angew. Chem. Int. Ed. 2014; 53: 734
    • 5c Zhao D. Luo H. Chen B. Chen W. Zhang G. Yu Y. J. Org. Chem. 2018; 83: 7860
    • 5d Atzrodt J. Derdau V. Kerr WJ. Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
    • 6a Prechtl MH. G. Hölscher M. Ben-David Y. Theyssen N. Loschen R. Milstein D. Leitner W. Angew. Chem. Int. Ed. 2007; 46: 2269
    • 6b Erdogan G. Grotjahn DB. J. Am. Chem. Soc. 2009; 131: 10354
    • 6c Lockley WJ. S. Hesk D. J. Labelled Compd. Radiopharm. 2010; 53: 704
    • 6d Prades A. Poyatos M. Peris E. Adv. Synth. Catal. 2010; 352: 1155
    • 6e Neubert L. Michalik D. Bähn S. Imm S. Neumann H. Atzrodt J. Derdau V. Holla W. Beller M. J. Am. Chem. Soc. 2012; 134: 12239
    • 6f Gröll B. Schnürch M. Mihovilovic MD. J. Org. Chem. 2012; 77: 4432
    • 6g Lee SH. Gorelsky SI. Nikonov GI. Organometallics 2013; 32: 6599
    • 6h Piola L. Fernández-Salas JA. Manzini S. Nolan SP. Org. Biomol. Chem. 2014; 12: 8683
    • 6i Bai W. Lee K.-H. Tse SK. S. Chan KW. Lin Z. Jia G. Organometallics 2015; 34: 3686
    • 6j Chatterjee B. Krishnakumar V. Gunanathan C. Org. Lett. 2016; 18: 5892
    • 6k Hale LV. A. Szymczak NK. J. Am. Chem. Soc. 2016; 138: 13489
    • 7a Blake MR. Garnett JL. Gregor IK. Hannan W. Hoa K. Long MA. J. Chem. Soc., Chem. Commun. 1975; 930
    • 7b Lockley WJ. S. Tetrahedron Lett. 1982; 23: 3819
    • 7c Hesk D. Jones JR. Lockley WJ. S. J. Labelled Compd. Radiopharm. 1990; 28: 1427
    • 7d Lenges CP. White PS. Brookhart M. J. Am. Chem. Soc. 1999; 121: 4385
    • 7e Chen S. Song G. Li X. Tetrahedron Lett. 2008; 49: 6929
    • 7f Campos J. Esqueda AC. López-Serrano J. Sánchez L. Cossio FP. de Cozar A. Álvarez E. Maya C. Carmona E. J. Am. Chem. Soc. 2010; 132: 16765
    • 7g Di Giuseppe A. Castarlenas R. Pérez-Torrente JJ. Lahoz FJ. Polo V. Oro LA. Angew. Chem. Int. Ed. 2011; 50: 3938
    • 7h Rhinehart JL. Manbeck KA. Buzak SK. Lippa GM. Brennessel WW. Goldberg KI. Jones WD. Organometallics 2012; 31: 1943
    • 7i Campos J. Rubio M. Esqueda AC. Carmona E. J. Labelled Compd. Radiopharm. 2012; 55: 29
    • 7j Di Giuseppe A. Castarlenas R. Pérez-Torrente JJ. Lahoz FJ. Oro LA. Chem.–Eur. J. 2014; 20: 8391
    • 7k Webster-Gardiner MS. Fu R. Fortman GC. Nielsen RJ. Gunnoe TB. Goddard WA. III. Catal. Sci. Technol. 2015; 5: 96
    • 8a Shu AY. L. Chen W. Heys JR. J. Organomet. Chem. 1996; 524: 87
    • 8b Ellames GJ. Gibson JS. Herbert JM. McNeill AH. Tetrahedron 2001; 57: 9487
    • 8c Heys JR. J. Labelled Compd. Radiopharm. 2007; 50: 770
    • 8d Zhou J. Hartwig JF. Angew. Chem. Int. Ed. 2008; 47: 5783
    • 8e Salter R. J. Labelled Compd. Radiopharm. 2010; 53: 645
    • 8f Herbert JM. J. Labelled Compd. Radiopharm. 2010; 53: 658
    • 8g Nilsson GN. Kerr WJ. J. Labelled Compd. Radiopharm. 2010; 53: 662
    • 8h Lockley WJ. S. J. Labelled Compd. Radiopharm. 2010; 53: 668
    • 8i Cochrane AR. Irvine S. Kerr WJ. Reid M. Andersson S. Nilsson GN. J. Labelled Compd. Radiopharm. 2013; 56: 451
    • 8j Parmentier M. Hartung T. Pfaltz A. Muri D. Chem.–Eur. J. 2014; 20: 11496
    • 8k Kerr WJ. Reid M. Tuttle T. ACS Catal. 2015; 5: 402
    • 8l Hatano M. Nishimura T. Yorimitsu H. Org. Lett. 2016; 18: 3674
    • 9a Garnett JL. Hodges RJ. J. Am. Chem. Soc. 1967; 89: 4546
    • 9b Emmert MH. Gary JB. Villalobos JM. Sanford MS. Angew. Chem. Int. Ed. 2010; 49: 5884
    • 9c Villalobos JM. Hickman AJ. Sanford MS. Organometallics 2010; 29: 257
    • 9d Hickman AJ. Cismesia MA. Sanford MS. Organometallics 2012; 31: 1761
  • 10 Yu RP. Hesk D. Rivera N. Pelczer I. Chirik PJ. Nature (London) 2016; 529: 195
  • 11 Miyaki N. Tomita I. Endo T. Polym. Bull. 1997; 39: 677
    • 12a Cacchi S. Felici M. Pietroni B. Tetrahedron Lett. 1984; 25: 3137
    • 12b Cacchi S. Pure Appl. Chem. 1990; 62: 713
    • 12c Cacchi S. Fabrizi G. Moro L. Pace P. Synlett 1997; 1367
    • 13a Oh CH. Jung HH. Kim KS. Kim N. Angew. Chem. Int. Ed. 2003; 42: 805

    • For coordination-controlled regioselectivity in these types of reactions, see:
    • 13b Kim N. Kim KS. Gupta AK. Oh CH. Chem. Commun. 2004; 618

      For a review on palladium 1,4-migration, see:
    • 14a Ma S. Gu Z. Angew. Chem. Int. Ed. 2005; 44: 7512

    • For selected examples of palladium 1,4-migration, see:
    • 14b Campo MA. Larock RC. J. Am. Chem. Soc. 2002; 124: 14326
    • 14c Campo MA. Huang Q. Yao T. Tian Q. Larock RC. J. Am. Chem. Soc. 2003; 125: 11506
    • 14d Kesharwani T. Larock RC. Tetrahedron 2008; 64: 6090
    • 14e Bhunia SK. Polley A. Natarajan R. Jana R. Chem.–Eur. J. 2015; 21: 16786
    • 14f Hu T.-J. Zhang G. Chen Y.-H. Feng C.-G. Lin G.-Q. J. Am. Chem. Soc. 2016; 138: 2897

    • For selected examples of palladium 1,5-migration, see:
    • 14g Bour C. Suffert J. Org. Lett. 2005; 7: 653
    • 14h Mota AJ. Dedieu A. Bour C. Suffert J. J. Am. Chem. Soc. 2005; 127: 7171
  • 15 Ryabov AD. Chem. Rev. 1990; 90: 403
  • 16 Canty AJ. van Koten G. Acc. Chem. Res. 1995; 28: 406
  • 17 Fryzuk MD. Bosnich B. J. Am. Chem. Soc. 1979; 101: 3043
  • 18 The crystal structure was not published in Ref. 17, but according to the authors of this manuscript, they were aware that the crystal structure had been solved based on personal correspondence with N. C. Payne.
  • 19 Cochran BM. Michael FE. J. Am. Chem. Soc. 2008; 130: 2786
  • 20 O’Duill ML. Matsuura R. Wang Y. Turnbull JL. Gurak JA. Jr. Gao D.-W. Lu G. Liu P. Engle KM. J. Am. Chem. Soc. 2017; 139: 15576
  • 21 Lan Y. Houk KN. J. Org. Chem. 2011; 76: 4905
  • 22 Peng Q. Yan H. Zhang X. Wu Y.-D. J. Org. Chem. 2012; 77: 7487
    • 23a Chernyak N. Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 5636
    • 23b Chernyak N. Gevorgyan V. Adv. Synth. Catal. 2009; 351: 1101
    • 23c Hwang JH. Jung YH. Hong YY. Jeon SL. Jeong IH. J. Fluorine Chem. 2011; 132: 1227
    • 23d Aziz J. Frison G. Le Menez P. Brion J.-D. Hamze A. Alami M. Adv. Synth. Catal. 2013; 355: 3425
    • 23e Kumar S. Saunthwal RK. Mujahid M. Aggarwal T. Verma AK. J. Org. Chem. 2016; 81: 9912

    • For similar palladium-catalyzed carbocyclization transformations that are proposed to proceed via distinct mechanisms, see:
    • 23f Burns B. Grigg R. Sridharan V. Worakun T. Tetrahedron Lett. 1988; 29: 4325
    • 23g Burns B. Grigg R. Ratananukul P. Sridharan V. Stevenson P. Sukirthalingam S. Worakun T. Tetrahedron Lett. 1988; 29: 5565
    • 23h Burns B. Grigg R. Sridharan V. Stevenson P. Sukirthalingam S. Worakun T. Tetrahedron Lett. 1989; 30: 1135
    • 23i Zhang Y. Negishi E. J. Am. Chem. Soc. 1989; 111: 3454
    • 23j Monteiro N. Gore J. Balme G. Tetrahedron 1992; 48: 10103
    • 23k Marat X. Monteiro N. Balme G. Synlett 1997; 845
    • 23l Tsukada N. Yamamoto Y. Angew. Chem., Int. Ed. Engl. 1997; 36: 2477
    • 24a Wakabayashi Y. Fukuda Y. Shiragami H. Utimoto K. Nozaki H. Tetrahedron 1985; 41: 3655
    • 24b Fukuda Y. Shiragami H. Utimoto K. Nozaki H. J. Org. Chem. 1991; 56: 5816
    • 24c Schabbert S. Schaumann E. Eur. J. Org. Chem. 1998; 1873
    • 25a Lambert C. Utimoto K. Nozaki H. Tetrahedron Lett. 1984; 25: 5323
    • 25b Mandai T. Ohta K. Baba N. Kawada M. Tsuji J. Synlett 1992; 671
    • 25c Monot J. Brunel P. Kefalidis CE. Espinosa-Jalapa NÁ. Maron L. Martin-Vaca B. Bourissou D. Chem. Sci. 2016; 7: 2179
    • 26a Kitamura T. Otsubo K. Heterocycles 2012; 86: 759
    • 26b Kitamura T. Otsubo K. J. Org. Chem. 2012; 77: 2978
    • 27a Iritani K. Matsubara S. Utimoto K. Tetrahedron Lett. 1988; 29: 1799
    • 27b Müller TE. Grosche M. Herdtweck E. Pleier A.-K. Walter E. Yan Y.-K. Organometallics 2000; 19: 170

    • For similar transformations proceeding via putative palladium hydride intermediates, see:
    • 27c Cacchi S. J. Organomet. Chem. 1999; 576: 42 ; and references therein
    • 27d Ren L. Shi Z. Jiao N. Tetrahedron 2013; 69: 4408
  • 28 Chernyak N. Gorelsky SI. Gevorgyan V. Angew. Chem. Int. Ed. 2011; 50: 2342
  • 29 Alam K. Hong SW. Oh KH. Park JK. Angew. Chem. Int. Ed. 2017; 56: 13387
  • 30 Ramana CV. Suryawanshi SB. Gonnade RG. J. Org. Chem. 2009; 74: 2842
    • 31a Song J. Shen Q. Xu F. Lu X. Org. Lett. 2007; 9: 2947
    • 31b Shibuya T. Shibata Y. Noguchi K. Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 3963
  • 32 Li X.-F. Zhang X.-G. Hu B.-L. Zhang X.-H. Org. Biomol. Chem. 2018; 16: 1736
  • 33 Liu G. Lu X. Adv. Synth. Catal. 2007; 349: 2247
  • 34 Veltri L. Paladino V. Plastina P. Gabriele B. J. Org. Chem. 2016; 81: 6106
  • 35 Aurrecoechea JM. Pérez E. Solay M. J. Org. Chem. 2001; 66: 564
    • 36a Jia C. Piao D. Oyamada J. Lu W. Kitamura T. Fujiwara Y. Science (Washington, D. C.) 2000; 287: 1992
    • 36b Jia C. Lu W. Oyamada J. Kitamura T. Matsuda K. Irie M. Fujiwara Y. J. Am. Chem. Soc. 2000; 122: 7252
    • 36c Jia C. Kitamura T. Fujiwara Y. J. Synth. Org. Chem., Jpn. 2001; 59: 1052

    • For a recent review on the Fujiwara hydroarylation of alkynes, see:
    • 36d Godoi MN. de Azambuja F. Martinez PD. G. Morgon NH. Santos VG. Regiani T. Lesage D. Dossmann H. Cole RB. Eberlin MN. Correia CR. D. Eur. J. Org. Chem. 2017; 1794
  • 37 Liu S. Bai Y. Cao X. Xiao F. Deng G.-J. Chem. Commun. 2013; 49: 7501
  • 38 Jia C. Piao D. Kitamura T. Fujiwara Y. J. Org. Chem. 2000; 65: 7516
  • 39 Tunge JA. Foresee LN. Organometallics 2005; 24: 6440
  • 40 Liu Z. Derosa J. Engle KM. J. Am. Chem. Soc. 2016; 138: 13076
  • 41 Panda N. Mothkuri R. J. Org. Chem. 2012; 77: 9407
  • 42 Derosa J. Cantu AL. Boulous MN. O’Duill ML. Turnbull JL. Liu Z. De La Torre DM. Engle KM. J. Am. Chem. Soc. 2017; 139: 5183
  • 43 Wu J. Yoshikai N. Angew. Chem. Int. Ed. 2015; 54: 11107
  • 44 Kohn BL. Jarvo ER. Org. Lett. 2011; 13: 4858
  • 45 Dickstein JS. Mulrooney CA. O’Brien EM. Morgan BJ. Kozlowski MC. Org. Lett. 2007; 9: 2441
    • 46a Xue L. Su W. Lin Z. Dalton Trans. 2010; 39: 9815
    • 46b Dickstein JS. Curto JM. Gutierrez O. Mulrooney CA. Kozlowski MC. J. Org. Chem. 2013; 78: 4744
  • 47 For a recent review on the use of carboxylic acids as traceless directing groups, see: Font M. Quibell JM. Perry GJ. P. Larrosa I. Chem. Commun. 2017; 53: 5584

    • For recent reviews on directed C–H activation with palladium, see:
    • 48a Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 48b McMurray L. O’Hara F. Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 48c Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843
    • 48d Shi G. Zhang Y. Adv. Synth. Catal. 2014; 356: 1419
    • 48e Rit RK. Yadav MR. Ghosh K. Sahoo AK. Tetrahedron 2015; 71: 4450
    • 48f Mehta VP. García-López J.-A. ChemCatChem 2017; 9: 1149
    • 48g He J. Wasa M. Chan KS. L. Shao Q. Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 49a Topczewski JJ. Cabrera PJ. Saper NI. Sanford MS. Nature (London) 2016; 531: 220
    • 49b Zhang F.-L. Hong K. Li T.-J. Park H. Yu J.-Q. Science (Washington, D. C.) 2016; 351: 252
    • 49c Chen G. Gong W. Zhuang Z. Andrä MS. Chen Y.-Q. Hong X. Yang Y.-F. Liu T. Houk KN. Yu J.-Q. Science (Washington, D. C.) 2016; 353: 1023
    • 49d Liu Y. Ge H. Nat. Chem. 2017; 9: 26
    • 49e Davis HJ. Phipps RJ. Chem. Sci. 2017; 8: 864
  • 50 Catellani M. Frignani F. Rangoni A. Angew. Chem., Int. Ed. Engl. 1997; 36: 119
  • 51 For a recent review on the use of norbornene in selective, aromatic C–H functionalization, see: Della Ca’ N. Fontana M. Motti E. Catellani M. Acc. Chem. Res. 2016; 49: 1389
  • 52 Wang X.-C. Gong W. Fang L.-Z. Zhu R.-Y. Li S. Engle KM. Yu J.-Q. Nature (London) 2015; 519: 334
  • 53 Dong Z. Wang J. Dong G. J. Am. Chem. Soc. 2015; 137: 5887
  • 54 Yamamura K. J. Org. Chem. 1978; 43: 724
    • 55a Cacchi S. La Torre F. Misiti D. Tetrahedron Lett. 1979; 20: 4591
    • 55b Lu X. Lin S. J. Org. Chem. 2005; 70: 9651
    • 56a Wang Z. Zhang Z. Lu X. Organometallics 2000; 19: 775
    • 56b Zhao L. Lu X. Org. Lett. 2002; 4: 3903
  • 57 Gini F. Hessen B. Minnaard AJ. Org. Lett. 2005; 7: 5309
  • 58 Zhang T. Shi M. Chem.–Eur. J. 2008; 14: 3759
  • 59 Wong J. Gan K. Chen HJ. Pullarkat SA. Adv. Synth Catal. 2014; 356: 3391
    • 60a Kikushima K. Holder JC. Gatti M. Stoltz BM. J. Am. Chem. Soc. 2011; 133: 6902
    • 60b Holder JC. Goodman ED. Kikushima K. Gatti M. Marziale AN. Stoltz BM. Tetrahedron 2015; 71: 5781
  • 61 Gottumukkala AL. Matcha K. Lutz M. de Vries JG. Minnaard AJ. Chem.–Eur. J. 2012; 18: 6907
    • 62a Nishikata T. Yamamoto Y. Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 2768
    • 62b Nishikata T. Yamamoto Y. Gridnev ID. Miyaura N. Organometallics 2005; 24: 5025
    • 62c Nishikata T. Yamamoto Y. Miyaura N. Adv. Synth. Catal. 2007; 349: 1759
  • 63 Ibrahem I. Ma G. Afewerki S. Córdova A. Angew. Chem. Int. Ed. 2013; 52: 878
  • 64 Zhi W. Li J. Zou D. Wu Y. Wu Y. J. Org. Chem. 2017; 82: 12286
    • 65a He Q. Xie F. Fu G. Quan M. Shen C. Yang G. Gridnev ID. Zhang W. Org. Lett. 2015; 17: 2250
    • 65b Chen S. Wu L. Shao Q. Yang G. Zhang W. Chem. Commun. 2018; 54: 2522
    • 66a Hosokawa T. Shinohara T. Ooka Y. Murahashi S.-I. Chem. Lett. 1989; 18: 2001
    • 66b Gaunt MJ. Spencer JB. Org. Lett. 2001; 3: 25
  • 67 Elliott LD. Wrigglesworth JW. Cox B. Lloyd-Jones GC. Booker-Milburn KI. Org. Lett. 2011; 13: 728
  • 68 Panda N. Yadav SA. Tetrahedron 2018; 74: 1497
  • 69 Wang F. Chen F. Qu M. Li T. Liu Y. Shi M. Chem. Commun. 2013; 49: 3360
    • 70a Pei T. Widenhoefer RA. J. Am. Chem. Soc. 2001; 123: 11290
    • 70b Qian H. Widenhoefer RA. J. Am. Chem. Soc. 2003; 125: 2056

      For intramolecular variants, see:
    • 71a Wang Z. Lu X. J. Org. Chem. 1996; 61: 2254
    • 71b Quan LG. Gevorgyan V. Yamamoto Y. J. Am. Chem. Soc. 1999; 121: 3545
    • 71c Lei A. Lu X. Org. Lett. 2000; 2: 2699
    • 71d Liu G. Lu X. Org. Lett. 2001; 3: 3879
    • 71e Shen Z. Lu X. Tetrahedron 2006; 62: 10896
    • 71f Tello-Aburto R. Harned AM. Org. Lett. 2009; 11: 3998

    • For an intermolecular reaction, see:
    • 71g Wang Z. Lu X. Chem. Commun. 1996; 535
  • 72 Liu R. Zhang J. Chem.–Eur. J. 2009; 15: 9303
  • 73 Yu S.-Y. Zhang H. Gao Y. Mo L. Wang S. Yao Z.-Y. J. Am. Chem. Soc. 2013; 135: 11402
  • 74 Tsuji J. Nisar M. Shimizu I. J. Org. Chem. 1985; 50: 3416
  • 75 Hénin F. Muzart J. Tetrahedron: Asymmetry 1992; 3: 1161
    • 76a Mohr JT. Nishimata T. Behenna DC. Stoltz BM. J. Am. Chem. Soc. 2006; 128: 11348
    • 76b Marinescu SC. Nishimata T. Mohr JT. Stoltz BM. Org. Lett. 2008; 10: 1039
    • 77a Doran R. Guiry PJ. J. Org. Chem. 2014; 79: 9112
    • 77b Kingston C. Guiry PJ. J. Org. Chem. 2017; 82: 3806
  • 78 Tamaru Y. Yamada Y. Kagotani M. Ochiai H. Nakajo E. Suzuki R. Yoshida Z. J. Org. Chem. 1983; 48: 4669
  • 79 Hegedus LS. Angew. Chem., Int. Ed. Engl. 1988; 27: 1113
  • 80 Larock RC. Babu S. Tetrahedron Lett. 1987; 28: 5291
    • 81a Smith KM. Langry KC. Minnetian OM. J. Org. Chem. 1984; 49: 4602
    • 81b Arcadi A. Marinelli F. Bernocchi E. Cacchi S. Ortar G. J. Organomet. Chem. 1989; 368: 249
    • 81c Larock RC. Johnson PL. J. Chem. Soc., Chem. Commun. 1989; 1368
  • 82 Reddy AC. S. Choutipalli VS. K. Ghorai J. Subramanian V. Anbarasan P. ACS Catal. 2017; 7: 6283
  • 83 Michael FE. Cochran BM. J. Am. Chem. Soc. 2006; 128: 4246
    • 84a Gurak JA. Jr. Yang KS. Liu Z. Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
    • 84b Gurak JA. Jr. Tran VT. Sroda MM. Engle KM. Tetrahedron 2017; 73: 3636
    • 84c Gurak JA. Jr. Engle KM. Synlett 2017; 28: 2057
  • 85 Shabashov D. Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 86a Yang K. Gurak JA. Jr. Liu Z. Engle KM. J. Am. Chem. Soc. 2016; 138: 14705
    • 86b Matsuura R. Jankins TC. Hill DE. Yang KS. Gallego GM. Yang S. He M. Wang F. Marsters RP. McAlpine I. Engle KM. Chem. Sci. 2018; DOI: DOI: 10.1039/C8SC03081B.
  • 87 Wang H. Bai Z. Jiao T. Deng Z. Tong H. He G. Peng Q. Chen G. J. Am. Chem. Soc. 2018; 140: 3542
  • 88 Tran VT. Gurak JA. Jr. Yang KS. Engle KM. Nat. Chem. 2018; 10: 1126
    • 89a Reddy BV. S. Reddy LR. Corey EJ. Org. Lett. 2006; 8: 3391
    • 89b Ano Y. Tobisu M. Chatani N. J. Am. Chem. Soc. 2011; 133: 12984
    • 89c He G. Zhao Y. Zhang S. Lu C. Chen G. J. Am. Chem. Soc. 2012; 134: 3
    • 89d Nadres ET. Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
    • 89e Zhang S.-Y. He G. Nack WA. Zhao Y. Li Q. Chen G. J. Am. Chem. Soc. 2013; 135: 2124
    • 89f He G. Zhang S.-Y. Nack WA. Li Q. Chen G. Angew. Chem. Int. Ed. 2013; 52: 11124
    • 89g Cui W. Chen S. Wu J.-Q. Zhao X. Hu W. Wang H. Org. Lett. 2014; 16: 4288
    • 89h He G. Zhang S.-Y. Nack WA. Pearson R. Rabb-Lynch J. Chen G. Org. Lett. 2014; 16: 6488
    • 89i Li S. Zhu R.-Y. Xiao K.-J. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 4317
    • 89j Xu J.-W. Zhang Z.-Z. Rao W.-H. Shi B.-F. J. Am. Chem. Soc. 2016; 138: 10750