Subscribe to RSS
DOI: 10.1055/s-0037-1611020
Transition-Metal-Catalyzed Cross-Coupling with Non-Diazo Carbene Precursors
The project has been supported by the National Basic Research Program of China (973 Program, No. 2015CB856600) and the Natural Science Foundation of China (21332002).
Publication History
Received: 16 August 2018
Accepted after revision: 17 September 2018
Publication Date:
16 October 2018 (online)

Abstract
Transition-metal-catalyzed cross-coupling reactions through metal carbene migratory insertion have emerged as powerful methodology for carbon–carbon bond constructions. Typically, diazo compounds (or in situ generated diazo compounds from N-tosylhydrazones) have been employed as the metal carbene precursors for this type of cross-coupling reactions. Recently, cross-coupling reactions employing non-diazo carbene precursors, such as conjugated ene-yne-ketones, allenyl ketones, alkynes, cyclopropenes, and Cr(0) Fischer carbenes, have been developed. This account will summarize our efforts in the development of transition-metal-catalyzed cross-coupling reactions with these non-diazo carbene precursors.
1 Introduction
2 Cross-Coupling with Ene-yne-ketones, Allenyl Ketones, and Alkynes
3 Cross-Coupling Involving Ring-Opening of Cyclopropenes
4 Palladium-Catalyzed Cross-Coupling with Chromium(0) Fischer Carbenes
5 Conclusion
-
References
- 1a Doyle MP. McKervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. Wiley; New York: 1998
- 1b Doyle MP. Forbes DC. Chem. Rev. 1998; 98: 911
- 1c Trnka TM. Grubbs RH. Acc. Chem. Res. 2001; 34: 18
- 1d de Frémont P. Marion N. Nolan SP. Coord. Chem. Rev. 2009; 253: 862
- 1e Vougioukalakis GC. Grubbs RH. Chem. Rev. 2010; 110: 1746
- 1f Davies HM. L. Denton JR. Chem. Soc. Rev. 2009; 38: 3061
- 1g Che C.-M. Lo VK.-Y. Zhou C.-Y. Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
- 1h Guo X. Hu W. Acc. Chem. Res. 2013; 46: 2427
- 1i Zhu SF. Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
- 2a Barluenga J. Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
- 2b Shao Z. Zhang H. Chem. Soc. Rev. 2012; 41: 560
- 2c Xiao Q. Zhang Y. Wang J. Acc. Chem. Res. 2013; 46: 236
- 2d Xia Y. Di Q. Wang J. Chem. Rev. 2017; 117: 13810
- 3a Xia Y. Wang J. Chem. Soc. Rev. 2017; 46: 2306
- 3b Di Q. Mo F. Zhang Y. Wang J. Adv. Organomet. Chem. 2017; 67: 151
- 4 Jia M. Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
- 5a Miki K. Uemura S. Ohe K. Chem. Lett. 2005; 34: 1068
- 5b Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 5c Jiménez-Núñez E. Echavarren AM. Chem. Rev. 2008; 108: 3326
- 5d Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
- 5e Marion M. Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2750
- 6a Miki K. Nishino F. Ohe K. Uemura S. J. Am. Chem. Soc. 2002; 124: 5260
- 6b Miki K. Washitake Y. Ohe K. Uemura S. Angew. Chem. Int. Ed. 2004; 43: 1857
- 6c Kato Y. Miki K. Nishino F. Ohe K. Uemura S. Org. Lett. 2003; 5: 2619
- 6d Vicente R. González J. Riesgo L. González J. López LA. Angew. Chem. Int. Ed. 2012; 51: 8063
- 6e González J. González J. Pérez-Calleja C. López LA. Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853
- 6f Cao H. Zhan H. Cen J. Lin J. Lin Y. Zhu Q. Fu M. Jiang H. Org. Lett. 2013; 15: 1080
- 6g Zhan H. Lin X. Qiu Y. Du Z. Li P. Li Y. Cao H. Eur. J. Org. Chem. 2013; 2284
- 6h Liu P. Sun J. Org. Lett. 2017; 19: 3482
- 6i Zheng Y. Bao M. Yao R. Qiu L. Xu X. Chem. Commun. 2018; 54: 350
- 7 Xia Y. Qu S. Xiao Q. Wang Z.-X. Qu P. Chen Li. Liu Z. Tian L. Huang Z. Zhang Y. Wang J. J. Am. Chem. Soc. 2013; 135: 13502
- 8 Xia Y. Ge R. Chen L. Liu Z. Xiao Q. Zhang Y. Wang J. J. Org. Chem. 2015; 80: 7856
- 9 Xia Y. Liu Z. Ge R. Xiao Q. Zhang Y. Wang J. Chem. Commun. 2015; 51: 11233
- 10 Hu F. Xia Y. Ma C. Zhang Y. Wang J. Org. Lett. 2014; 16: 4082
- 11 Hu F. Xia Y. Ma C. Zhang Y. Wang J. J. Org. Chem. 2016; 81: 3275
- 12 Xia Y. Chen L. Qu P. Ji G. Feng S. Xiao Q. Zhang Y. Wang J. J. Org. Chem. 2016; 81: 10484
- 13a Xiao J. Li X. Angew. Chem. Int. Ed. 2011; 50: 7226
- 13b Yeom H.-S. Shin S. Acc. Chem. Res. 2014; 47: 966
- 13c Zhang L. Acc. Chem. Res. 2014; 47: 877
- 13d Zheng Z. Wang Z. Wang Y. Zhang L. Chem. Soc. Rev. 2016; 45: 4448
- 14a He W. Li C. Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
- 14b Zhang L. Acc. Chem. Res. 2014; 47: 877
- 14c Ji K. Zheng Z. Wang Z. Zhang L. Angew. Chem. Int. Ed. 2015; 54: 1245
- 14d Homs A. Muratore ME. Echavarren AM. Org. Lett. 2015; 17: 461
- 14e Wang Y. Zheng Z. Zhang L. J. Am. Chem. Soc. 2015; 137: 5316
- 14f Chen H. Zhang L. Angew. Chem. Int. Ed. 2015; 54: 11775
- 14g Wang L. Xie X. Liu Y. Angew. Chem. Int. Ed. 2013; 52: 13302
- 14h Li J. Ji K. Zheng R. Nelson J. Zhang L. Chem. Commun. 2014; 50: 4130
- 15 Gao Y. Wu G. Zhou Q. Wang J. Angew. Chem. Int. Ed. 2018; 57: 2716
- 16a Xia Y. Xia Y. Ge R. Liu Z. Xiao Q. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2014; 53: 3917
- 16b Ma S. Zhang J. Lu L. Chem. Eur. J. 2003; 9: 2447
- 16c Ma S. Zhang J. Chem. Commun. 2000; 117
- 17a Baird MS. Chem. Rev. 2003; 103: 1271
- 17b Rubin M. Rubina M. Gevorgyan V. Synthesis 2006; 1221
- 17c Rubin M. Rubina M. Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 17d Zhu Z.-B. Wei Y. Shi M. Chem. Soc. Rev. 2011; 40: 5534
- 17e Miege F. Meyer C. Cossy J. Beilstein J. Org. Chem. 2011; 7: 717
- 18 Zhang H. Wang K. Wang B. Yi H. Hu F. Li C. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2014; 53: 13234
- 19a Guo W. Xia Y. J. Org. Chem. 2015; 80: 8113
- 19b Li J. Qiu Z. J. Org. Chem. 2015; 80: 10686
- 19c Chen J. Guo W. Xia Y. J. Org. Chem. 2016; 81: 2635
- 20 Zhang H. Wang B. Wang K. Xie G. Li C. Zhang Y. Wang J. Chem. Commun. 2014; 50: 8050
- 21a Barluenga J. Aguilar E. Adv. Organomet. Chem. 2017; 67: 1
- 21b Dötz KH. Stendel JJr. Chem. Rev. 2009; 109: 3227
- 21c Barluenga J. Santamaría J. Tomás M. Chem. Rev. 2004; 104: 2259
- 22a Song W. Blaszczyk SA. Liu J. Wang S. Tang W. Org. Biomol. Chem. 2017; 15: 7490
- 22b Dötz KH. Tomuschat P. Chem. Soc. Rev. 1999; 28: 187
- 22c de Meijere A. Schirmer H. Duetsch M. Angew. Chem. Int. Ed. 2000; 39: 3964
- 22d Dötz KH. Angew. Chem., Int. Ed. Engl. 1975; 14: 644
- 22e Dötz KH. Angew. Chem., Int. Ed. Engl. 1984; 23: 587
- 23a Gómez-Gallego M. Mancheño MJ. Sierra MA. Acc. Chem. Res. 2005; 38: 44
- 23b Wu Y.-T. Kurahashi T. de Meijere A. J. Organomet. Chem. 2005; 690: 5900
- 24a Sierra MA. Mancheño MJ. Sáez E. del Amo JC. J. Am. Chem. Soc. 1998; 120: 6812
- 24b Sierra MA. del Amo JC. Mancheño MJ. Gómez-Gallego M. J. Am. Chem. Soc. 2001; 123: 851
- 24c Göttker-Schnetmann I. Aumann R. Bergander K. Organometallics 2001; 20: 3574
- 24d Barluenga J. López LA. Löber O. Tomás M. García-Granda S. Alvarez-Rúa C. Borge J. Angew. Chem. Int. Ed. 2001; 40: 3392
- 24e Barluenga J. Barrio P. López LA. Tomás M. García-Granda S. Alvarez-Rúa C. Angew. Chem. Int. Ed. 2003; 42: 3008
- 24f Barluenga J. Vicente R. Barrio P. López LA. Tomás M. J. Am. Chem. Soc. 2004; 126: 5974
- 24g Aumann R. Göttker-Schnetmann I. Fröhlich R. Meyer O. Eur. J. Org. Chem. 1999; 2545
- 24h Barluenga J. Vicente R. López LA. Rubio E. Tomás M. Alvarez-Rúa C. J. Am. Chem. Soc. 2004; 126: 470
- 24i Barluenga J. Vicente R. Barrio P. López LA. Tomás M. J. Am. Chem. Soc. 2004; 126: 5974
- 24j Seidel G. Gabor B. Goddard R. Heggen B. Thiel W. Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 879
- 24k Seidel G. Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 4807
- 25 Wang K. Ping Y. Chang T. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2017; 56: 13140
- 26 Wang K. Lu Y. Hu F. Yang J. Zhang Y. Wang Z.-X. Wang J. Organometallics 2018; 37: 1
- 27 Wang K. Wu F. Zhang Y. Wang J. Org. Lett. 2017; 19: 2861
For selected reviews see:
For reviews see:
Also see:
For reviews see:
For selected examples of Pd catalysis see:
For Cu catalysis see:
For Ni catalysis, see:
For Rh catalysis, see:
For Au-catalysis, see: