Synthesis 2018; 50(23): 4539-4554
DOI: 10.1055/s-0037-1611014
short review
© Georg Thieme Verlag Stuttgart · New York

Multicomponent Reactions in the Synthesis of γ-Lactams

Edorta Martinez de Marigorta
,
Jesús M. de los Santos
,
Ana M. Ochoa de Retana
,
,
Financial support by Ministerio de Economía, Industria y Competitividad (MINECO, CTQ-2015-67871R) and Gobierno Vasco (GV, IT 992-16) is gratefully acknowledged
Weitere Informationen

Publikationsverlauf

Received: 05. September 2018

Accepted after revision: 05. September 2018

Publikationsdatum:
15. Oktober 2018 (online)


Abstract

This review summarizes the synthesis of γ-lactam ring using multicomponent reactions.

1 Introduction

2 Pyrrolidin-2-ones

3 Pyrrolin-2-ones (Dihydro-2H-pyrrol-2-ones)

4 Final Remarks

 
  • References

  • 1 Caruano J. Muccioli GG. Robiette R. Org. Biomol. Chem. 2016; 14: 10134
  • 2 Abou-Khali B. Neuropsychiatr. Dis. Treat. 2006; 4: 507
  • 3 Schwartz RE. Helms GL. Bolessa EA. Wilson KE. Giacobbe RA. Tkacz JS. Bills GF. Liesch JM. Zink DL. Curotto JE. Pramanik B. Onishi JC. Tetrahedron 1994; 50: 1675
  • 4 Osterhage C. Kaminski R. König GM. Wright AD. J. Org. Chem. 2000; 65: 6412
  • 5 Janecka A. Wyrȩbska A. Gach K. Fichna J. Janecki T. Drug Discovery Today 2012; 17: 561
  • 6 Bioactive Marine Natural Products . Bhakuni DS. Rawat DS. Springer; Dordrecht: 2005

    • For reviews see:
    • 7a Martelli G. Orena M. Rinaldi S. Curr. Org. Chem. 2014; 18: 1373
    • 7b Martelli G. Monsignori A. Orena M. Rinaldi S. Curr. Org. Chem. 2014; 18: 1539
    • 7c Pelkey ET. Pelkey SJ. Greger JG. Adv. Heterocycl. Chem. 2015; 115: 151
  • 8 Schreiber SL. Science 2000; 287: 1964
    • 9a Ramón DJ. Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
    • 9b Multicomponent Reactions in Organic Synthesis . Zhu J. Wang Q. Wang M.-X. Wiley-VCH; Weinheim: 2015
  • 10 Chatani N. Tobisu M. Asaumi T. Murai S. Synthesis 2000; 925
  • 11 Huo C. Yuan Y. J. Org. Chem. 2015; 80: 12704
  • 12 Bianchi L. Ballerini E. Curini M. Lanari D. Marrocchi A. Oldani C. Vaccaro L. ACS Sustainable Chem. Eng. 2015; 3: 1873
  • 13 Paul J. Presset M. Le Gall E. Léonel E. Retailleau P. Synthesis 2018; 50: 254
  • 14 Xu Y. Huang D. Wang K.-H. Ma J. Su Y. Fu Y. Hu Y. J. Org. Chem. 2015; 80: 12224
  • 15 Jiang H. Tian Y. Tian L. Li J. RSC Adv. 2017; 7: 32300
  • 16 Xu S. Su S. Zhang H. Tian L. Liang P. Chen J. Zhang Y. Li C. Jia X. Li J. Synthesis 2015; 47: 2414
  • 17 Cioc RC. van Riempst LS. Schuckman P. Ruijter E. Orru RV. Synthesis 2017; 49: 1664
  • 18 Che C. Li S. Jiang X. Quan J. Lin S. Yang Z. Org. Lett. 2010; 12: 4682
  • 19 Ghandi M. Khodadadi M. Abbasi A. J. Iran Chem. Soc. 2016; 13: 1691
  • 20 Gao Q. Hao W.-J. Liu F. Tu S.-J. Wang S.-L. Li G. Jiang B. Chem. Commun. 2016; 52: 900
  • 21 He Y.-T. Li L.-H. Zhou Z.-Z. Hua H.-L. Qiu Y.-F. Liu X.-Y. Liang Y.-M. Org. Lett. 2014; 16: 3896
  • 22 Esmaeili AA. Khoddam-Mohhammadi H. Moradi A. Davamdar E. Izaydar M. Khavani M. Islamin MR. RSC Adv. 2014; 4: 37900
  • 23 de Gracia Retamosa M. Ruiz-Olalla A. Bello T. de Cózar A. Cossío FP. Angew. Chem. Int. Ed. 2018; 57: 668
  • 24 Hoshimoto Y. Ohata T. Sasaoka Y. Ohashi M. Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15877
  • 25 Ogoshi S. Ikeda H. Kurosawa H. Angew. Chem. Int. Ed. 2007; 46: 4930
  • 26 Fukuyama T. Nakashima N. Okada T. Ryu I. J. Am. Chem. Soc. 2013; 135: 1006
  • 27 Ozawa T. Horie H. Kurahashi T. Matsubara S. Chem. Commun. 2010; 46: 8055
  • 28 Metten B. Kostermans M. Van Baelen G. Smet M. Dehaen W. Tetrahedron 2006; 62: 6018
  • 29 Mohammat MF. Shaameri Z. Hamzah AS. Molecules 2009; 14: 250
  • 30 Gein VL. Tsyplyakova EP. Stashina GA. Bakulev VA. Russ. J. Org. Chem. 2008; 44: 478
  • 31 Gein VL. Mar’yasov MA. Russ. J. Org. Chem. 2015; 51: 110
  • 32 Vydzhak RN. Panchishin SY. Russ. J. Gen. Chem. 2008; 78: 1641
  • 33 Kawasuji T. Fuji M. Yoshinaga T. Sato A. Fujiwara T. Kiyama R. Bioorg. Med. Chem. 2007; 15: 5487
  • 34 Gein VL. Kasimova NN. Aliev ZG. Vakhrin MI. Russ. J. Org. Chem. 2010; 46: 875
  • 35 Shymanska NV. Pierce JG. Org. Lett. 2017; 19: 2961
  • 36 Gein VL. Yushkov VV. Splina TA. Gein LF. Yatsenko KV. Shevtsova SG. Pharm. Chem. J. 2008; 42: 255
  • 37 Gao Y. Samanta S. Cui T. Lam Y. ChemMedChem 2013; 8: 1554
  • 38 Palacios F. Vicario J. Aparicio D. Eur. J. Org. Chem. 2006; 2843
  • 39 Li X. Deng H. Luo S. Cheng J.-P. Eur. J. Org. Chem. 2008; 4350
  • 40 Ghashang M. Res. Chem. Intermed. 2013; 39: 2187
  • 41 Reza M. Shafiee M. Najafabadi BH. Ghashang M. J. Chem. Res. 2011; 35: 634
  • 42 Ghashang M. Shaterian HR. Chin. J. Chem. 2011; 29: 1851
  • 43 Shaterian HR. Ranjbar M. Res. Chem. Intermed. 2014; 40: 2059
  • 44 Niknam K. Mojikhalifeh S. Mol. Diversity 2014; 18: 111
  • 45 del Corte X. Maestro A. Vicario J. Martinez de Marigorta E. Palacios F. Org. Lett. 2018; 20: 317
  • 46 Gao H. Sun J. Yan C.-G. Tetrahedron 2013; 69: 589
  • 47 Khan AT. Gosh A. Khan MM. Tetrahedron Lett. 2012; 53: 2622
  • 48 Saha M. Das AR. ChemistrySelect 2017; 2: 10249
  • 49 Zhu Q. Jiang H. Li J. Liu S. Xia C. Zhang M. J. Comb. Chem. 2009; 11: 685
    • 50a Nair V. Mathen JS. Vinod AU. Varma RL. Chem. Lett. 2001; 738
    • 50b Nair V. Mathen JS. Viji S. Srinivas R. Nandakumar MV. Varma RL. Tetrahedron 2002; 58: 8113
  • 51 Fan M.-F. Quian B. Zhao L.-B. Liang Y.-M. Tetrahedron 2007; 63: 8987
  • 52 Quai M. Frattini S. Vendrame U. Mondoni M. Dossena S. Cereda E. Tetrahedron Lett. 2004; 45: 1413
  • 53 Tang Z. Liu Z. An Y. Jiang R. Zhang X. Li C. Jia X. Li J. J. Org. Chem. 2016; 81: 9158
  • 54 Kumari S. Rajeswari M. Khurana JM. Synth. Commun. 2016; 46: 387
  • 55 Oon IC. Cho CS. Appl. Organometal. Chem. 2015; 29: 226
  • 56 Gao Q. Liu S. Wu X. Wu A. Tetrahedron Lett. 2014; 55: 6403
  • 57 Lin Y.-W. Deng J.-C. Hsieh Y.-Z. Chuang S.-C. Org. Biomol. Chem. 2014; 12: 162
  • 58 Deng J.-C. Chen W.-Y. Zhu C. Chuang S.-C. Adv. Synth. Catal. 2015; 357: 1453