Synthesis 2019; 51(02): 407-413
DOI: 10.1055/s-0037-1610844
feature
© Georg Thieme Verlag Stuttgart · New York

The Preparation of Tetramethyl 1,1′,3,3′-Ruthenocenetetra­carboxylate and Tetramethyl 1,1′,3,3′-Osmocenetetracarboxylate, and a Simplified Synthesis for Tetramethyl 1,1′,3,3′-Ferrocene­tetracarboxylate

Julia Hein
,
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany   Email: klettj@uni-mainz.de
› Author Affiliations
Further Information

Publication History

Received: 06 September 2018

Accepted after revision: 18 October 2018

Publication Date:
12 December 2018 (online)


Dedicated to Jean-Pierre Praly on his 70th birthday

Abstract

Substituted metallocenes with more than two substituents have to be synthesized using doubly substituted cyclopentadiene rings in a reaction with a metal compound or by the introduction of additional functional groups to an already di-substituted metallocene. The direct formation of tetra-substituted metallocenes often suffers due to insufficient reactivity of the reagents or the resulting product mixtures, which are hard to separate. In this work, a protocol, which was successful in a tetra-substitution of ferrocene by a tetra-metalation followed by a reaction with carbon dioxide, is used to perform the tetra-substitution of ruthenocene and osmocene. In addition, a simplified protocol for the tetra-functionalization of ferrocene using commercially available components on a medium scale is described.

Supporting Information

 
  • References

  • 1 Heinze K, Lang H. Organometallics 2013; 32: 5623
  • 2 Astruc D. Eur. J. Inorg. Chem. 2017; 6
  • 3 Petrov AR, Jess K, Freytag M, Jones PG, Tamm M. Organometallics 2013; 32: 5946
  • 4 Förster C, Heinze K. Z. Anorg. Allg. Chem. 2015; 641: 517
  • 5 Roemer M, Nijhuis CA. Dalton Trans. 2014; 43: 11815
  • 6 Sanders R, Mueller-Westerhoff UT. J. Organomet. Chem. 1996; 512: 219
    • 7a Halasa AF, Tate DP. J. Organomet. Chem. 1970; 24: 769
    • 7b Benkeser RA, Nagai Y, Hooz J. J. Am. Chem. Soc. 1964; 86: 3742
  • 8 Clegg W, Henderson KW, Kennedy AR, Mulvey RE, O’Hara CT, Rowlings RB, Tooke DM. Angew. Chem. Int. Ed. 2001; 40: 3902
  • 9 Clegg W, Crosbie E, Dale-Black SH, Hevia E, Honeyman GW, Kennedy AR, Mulvey RE, Ramsay DL, Robertson SD. Organometallics 2015; 34: 2580
  • 10 Hildebrandt A, Al Khalyfeh K, Schaarschmidt D, Korb M. J. Organomet. Chem. 2016; 804: 87
    • 11a Schlosser M. Pure Appl. Chem. 1988; 60: 1627
    • 11b Lochmann L, Janata M. Cent. Eur. J. Chem. 2014; 12: 537
  • 12 Bauer W, Lochmann L. J. Am. Chem. Soc. 1992; 114: 7482
  • 13 Schrock RR, Fellmann JD. J. Am. Chem. Soc. 1978; 100: 3359
  • 14 Fraenkel G, Chow A, Winchester WR. J. Am. Chem. Soc. 1990; 112: 6190
  • 15 Benrath P, Kaiser M, Limbach T, Mondeshki M, Klett J. Angew. Chem. Int. Ed. 2016; 55: 10886
  • 16 Kaiser M, Klett J. Dalton Trans. 2018; 47: 12582
  • 17 Screttas CG, Steele BR. J. Organomet. Chem. 1993; 453: 163
  • 18 Jennewein B, Kimpel S, Thalheim D, Klett J. Chem. Eur. J. 2018; 24: 7605
  • 19 Deschenaux R, Kosztics I, Nicolet B. J. Mater. Chem. 1995; 5: 2291
  • 20 Micallef LS, Loughrey BT, Healy PC, Parsons PG, Williams ML. Organometallics 2011; 30: 1395
  • 21 Langheim D, Wenzel M, Nipper E. Chem. Ber. 1975; 108: 146
  • 22 Andrikopoulos PC, Armstrong DR, Clegg W, Gilfillan CJ, Hevia E, Kennedy AR, Mulvey RE, O’Hara CT, Parkinson JA, Tooke DM. J. Am. Chem. Soc. 2004; 126: 11612
  • 23 Inorganic Reactions and Methods, Volume 11, The Formation of Bonds to C, Si, Ge, Sn, Pb (Part 3). Zuckerman JJ, Hagen AP. Wiley; New York: 2009
  • 24 Waniek SD, Klett J, Förster C, Heinze K. Beilstein J. Org. Chem. 2018; 14: 1004
  • 25 Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
  • 26 Presser A, Hüfner A. Monatsh. Chem. 2004; 135: 1015