Synthesis 2019; 51(23): 4348-4358
DOI: 10.1055/s-0037-1610732
feature
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free [2,3]-Sigmatropic Rearrangement Reactions of Photochemically Generated Ammonium Ylides

Fang Li
,
Feifei He
,
RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany   Email: rene.koenigs@rwth-aachen.de
› Author Affiliations
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project no. 408033718.
Further Information

Publication History

Received: 13 July 2019

Accepted after revision: 06 September 2019

Publication Date:
14 October 2019 (online)


Abstract

The rearrangement reaction of ammonium ylides furnishes valuable α,α-disubstituted amino esters. In this work, we describe the visible-light photolysis reaction of aryldiazoacetates in the presence of tertiary amines that react via a free ammonium ylide in a sigmatropic rearrangement reaction to provide amino esters in moderate to very good yields (33 examples, up to 97% yield).

Supporting Information

 
  • References

    • 1a Jones AC, May JA, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556
    • 1b Hoffmann R, Woodward RB. Acc. Chem. Res. 1968; 1: 17
    • 1c Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
    • 1d Neuhaus JD, Oost R, Merad J, Maulide N. Top. Curr. Chem. 2018; 376: 15
    • 1e Bach R, Harthong S, Lacour J. In Comprehensive Organic Synthesis II, 2nd ed., Vol. 3. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 992-1037
    • 2a Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J. Tetrahedron 2017; 73: 4011
    • 2b Hock KJ, Koenigs RM. Angew. Chem. Int. Ed. 2017; 56: 13566
    • 2c West TH, Spoehrle SS. M, Kasten K, Taylor JE, Smith AD. ACS Catal. 2015; 5: 7446
    • 2d Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
    • 2e Zhang X.-M, Tu Y.-Q, Zhang F.-M, Chen Z.-H, Wang S.-H. Chem. Soc. Rev. 2017; 46: 2272

      Selected references on [1,2]-sigmatropic rearrangement reactions of ylides:
    • 3a Song Z, Wu Y, Xin T, Jin C, Wen X, Sun H, Xu Q.-L. Chem. Commun. 2016; 52: 6079
    • 3b Yuan H, Nuligonda T, Gao H, Tung C.-H, Xu Z. Org. Chem. Front. 2018; 5: 1371
    • 3c Li Y, Huang Z, Wu X, Xu P, Wang J, Zhang Y. Org. Lett. 2011; 13: 1210
    • 3d Liao M, Peng L, Wang J. Org. Lett. 2008; 10: 693
    • 3e Xu X, Li C, Xiong M, Tao Z, Pan Y. Chem. Commun. 2017; 53: 6219
    • 3f Huang Y, Li X, Wang X, Yu Y, Zheng J, Wu W, Jiang H. Chem. Sci. 2017; 8: 7047
    • 3g Bott TM, Vanecko JA, West FG. J. Org. Chem. 2009; 74: 2832
    • 3h Vanecko JA, West FG. Org. Lett. 2005; 7: 2949
    • 3i Qin G, Li L, Li J, Huang H. J. Am. Chem. Soc. 2015; 137: 12490
    • 3j Harthong S, Bach R, Besnard C, Guenee L, Lacour J. Synthesis 2013; 45: 2070
    • 3k Goncalves-Farbos M.-H, Vial L, Lacour J. Chem. Commun. 2008; 829

      Selected references on [2,3]-sigmatropic rearrangement reactions of light chalcogenonium ylides:
    • 4a Kirmse W, Kapps M. Chem. Ber. 1968; 101: 994
    • 4b Doyle MP, Tamblyn WH, Bagheri VJ. J. Org. Chem. 1981; 46: 5094
    • 4c Hock KJ, Mertens L, Hommelsheim R, Spitzner R, Koenigs RM. Chem. Commun. 2017; 53: 6577
    • 4d Stepakov AV, Molchanov AP, Magull J, Vidovic D, Starova GL, Kopf J, Kostikov RR. Tetrahedron 2006; 62: 3610
    • 4e Davies PW, Albrecht SJ.-C, Assanelli G. Org. Biomol. Chem. 2009; 7: 1276
    • 4f Liao M, Wang J. Green Chem. 2007; 9: 184
    • 4g Holzwarth MS, Alt I, Plietker B. Angew. Chem. Int. Ed. 2012; 51: 5351
    • 4h Zhang Z, Sheng Z, Yu W, Zhang R, Chu W.-D, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970
    • 4i Li Z, Boyarskikh V, Hansen JH, Autschbach J, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 15497
    • 4j Fukuda T, Katsuki T. Tetrahedron Lett. 1997; 38: 3435
    • 4k Skrobo B, Schloerer NE, Neudoerfl J.-M, Deska J. Chem. Eur. J. 2018; 24: 3209

      Selected references on [2,3]-sigmatropic rearrangement reactions of selenonium ylides:
    • 5a Jana S, Koenigs RM. Org. Lett. 2019; 21: 3653
    • 5b Ibata T, Kashiuchi M. Bull. Chem. Soc. Jpn. 1986; 59: 929
    • 5c Kurose N, Takahashi T, Koizumi T. J. Org. Chem. 1997; 62: 4562
    • 5d Nishibayashi Y, Ohe K, Uemura S. J. Chem. Soc., Chem. Commun. 1995; 1245
    • 5e Jana S, Aseeva P, Koenigs RM. Chem. Commun. 2019; DOI: in press: 10.1039/C9CC06830A.

      Selected references on sigmatropic rearrangement reactions of halonium ylides:
    • 6a Xu B, Tambar UK. J. Am. Chem. Soc. 2016; 138: 12073
    • 6b Xu B, Tambar UK. Angew. Chem. Int. Ed. 2017; 56: 9868

      Selected references on dealkylative rearrangement reactions:
    • 7a Empel C, Hock KJ, Koenigs RM. Chem. Commun. 2019; 55: 338
    • 7b Yan X, Li C, Xu X, He Q, Zhao X, Pan Y. Tetrahedron 2019; 75: 3081

      Selected references on sigmatropic rearrangement reactions of ammonium ylides:
    • 8a Sweeney JB. Chem. Soc. Rev. 2009; 38: 1027
    • 8b Roiser L, Zielke K, Waser M. Asian J. Org. Chem. 2018; 7: 852
    • 8c Li A.-H, Dai L.-X, Aggarwal VK. Chem. Rev. 1997; 97: 2341

      References on [2,3]-sigmatropic rearrangement reactions of ammonium ylides:
    • 9a Zhou C.-Y, Yu W.-Y, Chan PW. H, Che C.-M. J. Org. Chem. 2004; 69: 7072
    • 9b Clark JS, Middleton MD. Org. Lett. 2002; 4: 765
    • 9c Honda K, Shibuya H, Yasui H, Hoshino Y, Inoue S. Bull. Chem. Soc. Jpn. 2008; 81: 142
    • 9d Lahm B, Pacheco JC. O, Opatz T. Synthesis 2014; 46: 2413
    • 9e Roberts E, Sancon JP, Sweeney JB. Org. Lett. 2005; 7: 2075
    • 9f Workman JA, Garrido NP, Sancon J, Roberts E, Wessel HP, Sweeney JB. J. Am. Chem. Soc. 2005; 127: 1066
    • 9g Aggarwal VK, Fang GY, Charmant JP. H, Meek G. Org. Lett. 2003; 5: 1757
    • 9h West TH, Daniels DS. B, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2014; 136: 4476
    • 9i Roberts E, Sancon JP, Sweeney JB, Workman JA. Org. Lett. 2003; 5: 4775
    • 9j Aviv I, Gross Z. Chem. Eur. J. 2008; 14: 3995
    • 9k Rautenstrauch V. Helv. Chim. Acta 1972; 55: 2233

      References on sigmatropic rearrangement of ammonium ylides with donor–acceptor diazoalkanes:
    • 10a Hansen SR, Spangler JE, Hansen JH, Davies HM. L. Org. Lett. 2012; 14: 4626
    • 10b Sharma A, Guénée L, Naubron J.-V, Lacour J. Angew. Chem. Int. Ed. 2011; 50: 3677

      Selected references:
    • 11a Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 11b Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 11c Doyle MP, Duffy R, Ratnikov M, Zhou Z. Chem. Rev. 2010; 110: 704
    • 11d Mertens L, Koenigs RM. Org. Biomol. Chem. 2016; 14: 10547
    • 11e Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 11f Mykhailiuk PK, Koenigs RM. Chem. Eur. J. 2019; 25: 6053

      Selected articles on nonprecious metal-catalyzed carbene-transfer reactions:
    • 12a Knölker H.-J, Bauer I. Chem. Rev. 2015; 115: 3170
    • 12b Zhu S.-F, Zhou Q.-L. Nat. Sci. Rev. 2014; 1: 580
    • 12c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086

      Selected references:
    • 13a Luo X, Chen G, He L, Huang X. J. Org. Chem. 2016; 81: 2943
    • 13b Barroso R, Jiménez A, Pérez-Aguilar MC, Cabal M.-P, Valdés C. Chem. Commun. 2016; 52: 3677
    • 14a Liang Y, Jiao L, Zhang S, Xu J. J. Org. Chem. 2005; 70: 334
    • 14b Wang J, Burdzinski G, Kubicki J, Platz MS. J. Am. Chem. Soc. 2008; 130: 11195
    • 14c Nakatani K, Maekawa S, Tanabe K, Saito I. J. Am. Chem. Soc. 1995; 117: 10635
    • 15a Ciszewski LW, Rybicka-Jasinska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
    • 15b Candeias NR, Afonso CA. M. Curr. Org. Chem. 2009; 13: 763
    • 15c von Doering W, Mole T. Tetrahedron 1960; 10: 65
    • 15d DeMore WB, Pritchard HO, Davidson N. J. Am. Chem. Soc. 1959; 81: 5874
    • 15e Galkina OS, Rodina LL. Russ. Chem. Rev. 2016; 85: 537
    • 15f Empel C, Koenigs RM. Synlett 2019; 30: 1929
    • 16a Meerwein H, Rathjen H, Werner H. Ber. Dtsch. Chem. Ges. B 1942; 75: 1610
    • 16b von Doering W, Knox LH, Jones MJr. J. Org. Chem. 1959; 24: 136
    • 16c Corey EJ, Felix AM. J. Am. Chem. Soc. 1965; 87: 2518
    • 16d Minh TD, Strausz OP, Gunning HE. J. Am. Chem. Soc. 1969; 91: 1261
    • 16e Lowe G, Parker J, Wang J, Burdzinski G, Gustafson TL, Platz MS. J. Org. Chem. 2006; 71: 6221
    • 17a Jurberg I, Davies HM. L. Chem. Sci. 2018; 9: 5112
    • 17b Xiao T, Mei M, He Y, Zhou L. Chem. Commun. 2018; 54: 8865
    • 17c Yang J, Wang J, Huang H, Qin G, Jiang Y, Xiao T. Org. Lett. 2019; 21: 2654
    • 17d Zhang X, Du C, Zhang H, Li X.-C, Wang Y.-L, Niu J.-L, Song M.-P. Synthesis 2019; 51: 889
    • 17e Zhang Z, Yadagiri D, Gevorgyan V. Chem. Sci. 2019; DOI: in press; 10.1039/C9SC02448D.
    • 18a Hommelsheim RM, Guo Y, Yang Z, Empel C, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 1203
    • 18b He F, Koenigs RM. Chem. Commun. 2019; 55: 4881
    • 18c Jana S, Koenigs RM. Asian J. Org. Chem. 2019; 8: 683
    • 18d Yang Z, Guo Y, Koenigs RM. Chem. Eur. J. 2019; 25: 6703
    • 18e Empel C, Patureau FW, Koenigs RM. J. Org. Chem. 2019; 84: 11316
    • 18f Jana S, Yang Z, Pei C, Xu X, Koenigs RM. Chem. Sci. 2019; in press: DOI: 10.1039/C9SC04069B
  • 19 Liang H, Bao L, Du Y, Zhang Y, Pang S, Sun C. Synlett 2017; 28: 2675
    • 20a Kwon Y, Jung J, Kim JH, Kim W.-J, Kim S. Asian J. Org. Chem. 2017; 6: 520
    • 20b Yang S.-C, Hung C.-W. Synthesis 1999; 1747
    • 20c Katayama H, Takatsu N. Chem. Pharm. Bull. 1981; 29: 2465
    • 20d Antilla JC, Buchwald SL. Org. Lett. 2001; 3: 2077
    • 20e Zeng X, Soleilhavoup M, Bertrand G. Org. Lett. 2009; 11: 3166
    • 20f Wipf P, Maciejewski JP. Org. Lett. 2008; 10: 4383
    • 20g Mendoza-Espinosa D, Negrón-Silva G, Lomas-Romero L, Gutiérrez-Carrillo A, Santillán R. Synth. Commun. 2014; 44: 807