Synthesis 2019; 51(13): 2687-2696
DOI: 10.1055/s-0037-1610701
special topic
© Georg Thieme Verlag Stuttgart · New York

N-Aminations of Benzylamines and Alicyclic Amines with Nitrosoarenes to Hydrazones and Hydrazides

Anisha Purkait
,
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India   Email: ckjana@iitg.ac.in
› Author Affiliations
We acknowledge financial support from Science and Engineering Research Board (SERB).
Further Information

Publication History

Received: 13 February 2019

Accepted after revision: 12 March 2019

Publication Date:
17 April 2019 (eFirst)

Published as part of the Special Topic Amination Reactions in Organic Synthesis

Abstract

Unlike other alkylamines, benzylamines upon reaction with a nitrosoarene undergo oxidation to the corresponding imines. A direct amination of benzylamines, which was difficult to achieve due to its facile oxidation, to the corresponding hydrazones is reported. A wide variety of benzylamines and N-heterocycles were reacted with nitrosoarenes to provide structurally diverse hydrazones and hydrazides, respectively. Moreover, the direct N-amination reaction was applied to the one-pot synthesis of triazoles.

Supporting Information

 
  • References

    • 1a Zuman P, Shah B. Chem. Rev. 1994; 94: 1621
    • 1b Yamamoto H, Momiyama N. Chem. Commun. 2005; 3514
    • 1c Yamamoto Y, Yamamoto H. Eur. J. Org. Chem. 2006; 2031
    • 1d Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630
    • 1e Wencewicz TA, Yang BY, Rudloff JR, Oliver AG, Miller MJ. J. Med. Chem. 2011; 54: 6843
    • 1f Baidya M, Yamamoto H. Synthesis 2013; 45: 1931
    • 1g Huang J, Chen Z, Yuan J, Peng Y. Asian J. Org. Chem. 2016; 8: 951
    • 2a Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
    • 2b Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 5360
    • 2c Bogevig A, Sunden H, Cordova A. Angew. Chem. Int. Ed. 2004; 43: 1109
    • 2d Hayashi Y, Yamaguchi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2004; 43: 1112
    • 2e Momiyama N, Torii H, Saito S, Yamamoto H. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5374
    • 2f Guo HM, Cheng L, Cun LF, Gong LZ, Mi AQ, Jiang YZ. Chem. Commun. 2006; 429
    • 2g Zhang T, Cheng L, Liu L, Wang D, Chen YJ. Tetrahedron: Asymmetry 2010; 21: 2800
    • 2h Maji B, Yamamoto H. Angew. Chem. Int. Ed. 2014; 53: 8714
    • 2i Ramakrishna I, Bhajammanavar V, Mallik S, Baidya M. Org. Lett. 2017; 19: 516
    • 2j Roy SK, Tiwari A, Saleem M, Jana CK. Chem. Commun. 2018; 54: 14081
    • 3a Yang L, Tan B, Wang F, Zhong G. J. Org. Chem. 2009; 74: 1744
    • 3b Murru S, Gallo AA, Srivastava RS. ACS Catal. 2011; 1: 29
    • 3c Sun ZX, Cheng Y. Org. Biomol. Chem. 2012; 10: 4088
    • 3d Bujok R, Cmoch P, Wróbel Z. Tetrahedron Lett. 2014; 55: 3410
    • 3e Manna S, Narayan R, Golz C, Strohmann C, Antonchick AP. Chem. Commun. 2015; 51: 6119
    • 3f Sharma P, Liu RS. Org. Lett. 2016; 18: 412
    • 3g Yang Y, Ren HX, Chen F, Zhang ZB, Zou Y, Chen C, Song XJ, Tian F, Peng L, Wang LX. Org. Lett. 2017; 19: 2805
    • 3h Purkait A, Roy SK, Srivastava HK, Jana CK. Org. Lett. 2017; 19: 2540
    • 3i Kawade RK, Liu RS. Angew. Chem. Int. Ed. 2017; 56: 2035
    • 4a Kerber RC, Cann MC. J. Org. Chem. 1974; 39: 2552
    • 4b Gilchrist TL, Roberts TG. J. Chem. Soc., Perkin Trans. 1 1983; 1283
    • 4c McClure KF, Danishefsky SJ. J. Org. Chem. 1991; 56: 850
    • 4d Yamamoto Y, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 4128
    • 4e Jana CK, Studer A. Angew. Chem. Int. Ed. 2007; 46: 6542
    • 4f Jana CK, Grimme S, Studer A. Chem. Eur. J. 2009; 15: 9078
    • 4g Carosso S, Miller MJ. Org. Biomol. Chem. 2014; 12: 7445
    • 4h Maji B, Yamamoto H. J. Am. Chem. Soc. 2015; 137: 15957
    • 5a Adam W, Krebs O. Chem. Rev. 2003; 103: 4131
    • 5b Atkinson D, Kabeshov MA, Edgar M, Malkov AV. Adv. Synth. Catal. 2011; 353: 3347
    • 6a Chidley T, Vemula N, Carson CA, Kerr MA, Pagenkopf BL. Org. Lett. 2016; 18: 2922
    • 6b Das S, Daniliuc CG, Studer A. Org. Lett. 2016; 18: 5576
    • 6c Das S, Chakrabarty S, Daniliuc CG, Studer A. Org. Lett. 2016; 18: 2784
    • 7a Wu YM, Ho LY, Cheng CH. J. Org. Chem. 1985; 50: 392
    • 7b Zhao R, Tan C, Xie Y, Gao C, Liu H, Jiang Y. Tetrahedron Lett. 2011; 52: 3805
    • 7c Wróbel Z, Stachowska K, Kwast A. Eur. J. Org. Chem. 2014; 7721
    • 7d Ramakumar K, Tunge JA. Chem. Commun. 2014; 50: 13056
    • 7e Li J, Zhou H, Zhang J, Yang H, Jiang G. Chem. Commun. 2016; 52: 9589
    • 7f Nguyen TH. L, Gigant N, Delarue-Cochin S, Joseph D. J. Org. Chem. 2016; 81: 1850
    • 7g Meenakshi R, Shakeela K, Kutt Rani S, Ranga Rao G. Catal. Lett. 2018; 148: 246

      Aromatic N-amination using other reagents, see:
    • 8a Hynes J, Doubleday WW, Dyckman AJ, Godfrey JD, Grosso JA, Kiau S, Leftheris K. J. Org. Chem. 2004; 69: 1368
    • 8b Bhattacharya A, Patel NC, Plata RE, Peddicord M, Ye Q, Parlanti L, Palaniswamy VA, Grosso JA. Tetrahedron Lett. 2006; 47: 5341
    • 8c Huynh U, Nasir Uddin M, Wengryniuk SE, McDonald SL, Coltart DM. Tetrahedron Lett. 2016; 57: 4799
    • 9a Job A, Janeck CF, Bettray W, Peters R, Enders D. Tetrahedron 2002; 58: 2253
    • 9b Terzioglu N, Gürsoy A. Eur. J. Med. Chem. 2003; 38: 781
    • 9c Loncle C, Brunel JM, Vidal N, Dherbomez M, Letourneux Y. Eur. J. Med. Chem. 2004; 39: 1067
    • 9d Xiang Y, Tong A, Jin P, Ju Y. Org. Lett. 2006; 8: 2863
    • 9e Belkheri N, Bougerne B, Bedos-Beval F, Duran H, Bernis C, Salvayre R, Nègre-Salvayre A, Baltas M. Eur. J. Med. Chem. 2010; 45: 3019
    • 9f Huang Z, Wang C, Dong GA. Angew. Chem. Int. Ed. 2016; 55: 5299
  • 10 Su X, Aprahamian I. Chem. Soc. Rev. 2014; 43: 1963
    • 11a Hwu JR, Lin CC, Chuang SH, King KY, Su TR, Tsay SC. Bioorg. Med. Chem. 2004; 12: 2509
    • 11b Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 11c Li F, Sun C, Wang N. J. Org. Chem. 2014; 79: 8031
  • 12 Kurandina DV, Eliseenkov EV, Ilyin PV, Boyarskiy VP. Tetrahedron 2014; 70: 4043
    • 13a Wagaw S, Yang BH, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 6621
    • 13b Thiel OR, Achmatowicz MM, Reichelt A, Larsen RD. Angew. Chem. Int. Ed. 2010; 49: 8395
    • 13c Ding Y, Li H, Meng Y, Zhang T, Li J, Chen QY, Zhu C. Org. Chem. Front. 2017; 4: 1611
  • 14 For an example of a related isomerization of azoalkanes, see: Prechter A, Heinrich MR. Synthesis 2011; 1515

    • For related oxidation of cyclic amines, see:
    • 15a Deb ML, Pegu CD, Borpatra PJ, Saikia PJ, Baruah PK. Green Chem. 2017; 19: 4036
    • 15b Mandal S, Mahato S, Jana CK. Org. Lett. 2015; 17: 3762
  • 16 Chen Z, Li H, Dong W, Miao M, Ren H. Org. Lett. 2016; 18: 1334
    • 17a Haycock-Lewandowski SJ, Wilder A, Ahman J. Org. Process Res. Dev. 2008; 12: 1094
    • 17b Siddaiah V, Basha GM, Srinuvasarao R, Yadav SK. Catal. Lett. 2011; 141: 1511
    • 17c Turner K. Org. Process Res. Dev. 2012; 16: 727
    • 18a Planes LO, Escrich CR, Pericas MA. Org. Lett. 2014; 16: 1704
    • 18b Otley KD, Ellman JA. J. Org. Chem. 2014; 79: 8296
    • 18c Ribeiro CJ. A, Nunes RC, Amaral JD, Gonçalves LM, Rodrigues CM. P, Moreira R, Santos MM. M. Eur. J. Med. Chem. 2017; 140: 494
    • 18d Metwally SA. M, Mohamed TA, Moustafa OS, El-Ossaily YA. Chem. Heterocycl. Compd. 2011; 46: 1344
    • 18e Zhang M, Shang Z.-R, Li X.-T, Zhang J.-N, Wang Y, Li K, Li Y.-Y, Zhang Z.-H. Synth. Commun. 2017; 47: 178
    • 18f Turkoglu G, Berber H, Kani I. New J. Chem. 2015; 39: 2728