CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 285-295
DOI: 10.1055/s-0037-1610387
paper
Copyright with the author

Synthesis of the C1–C12 Fragment of Calyculin C

a  Aalto University School of Chemical Engineering, Department of Chemistry and Materials Science, Kemistintie 1, P.O. Box 16100, 02150 Espoo, Finland   Email: ari.koskinen@aalto.fi
b  Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
,
a  Aalto University School of Chemical Engineering, Department of Chemistry and Materials Science, Kemistintie 1, P.O. Box 16100, 02150 Espoo, Finland   Email: ari.koskinen@aalto.fi
› Author Affiliations
This work was supported by the Academy of Finland (project number 266369) and (to O.V.K.) the FP7 InnovaBalt project (contract Nr.316149). The authors would like to acknowledge the networking contribution by COST Action CM1407 “Challenging organic syntheses inspired by nature – from natural products chemistry to drug discovery”.
Further Information

Publication History

Received: 26 September 2018

Accepted after revision: 26 October 2018

Publication Date:
22 November 2018 (eFirst)

  

Dedicated to the memory of Professor István E. Markó.

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

Calyculins are a class of highly cytotoxic metabolites originally isolated from the marine sponge Discodermia calyx. To date, a total of twelve different calyculins (A–J) and calyculinamides (A, B and F) have been described, the most abundant (in D. calyx) being calyculins A and C. Herein, we demonstrate a concise route to access the C1–C12 tetraene fragment of calyculin C using transition-metal-catalyzed coupling reactions (Suzuki–Miyaura, Stille, Negishi and Heck) for the key connections. The synthesis starts from propionaldehyde and proceeds in 10 steps with 7.5% overall yield. We also describe an efficient route for the preparation of (Z)-3-iodobut-2-enenitrile in four steps and 68% yield.

Supporting Information

 
  • References

    • 1a Kato Y, Fusetani N, Matsunaga S, Hashimoto K. J. Am. Chem. Soc. 1986; 108: 2780
    • 1b Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Koseki K. J. Org. Chem. 1988; 53: 3930
    • 1c Calyculins E–H: Matsunaga S, Fujiki H, Sakata D, Fusetani N. Tetrahedron 1991; 47: 2999
  • 2 Dumdei EJ, Blunt JW, Munro MH. G, Pannell LK. J. Org. Chem. 1997; 62: 2636
  • 3 Matsunaga S, Wakimoto T, Fusetani N. J. Org. Chem. 1997; 62: 2640
  • 4 Matsunaga S, Wakimoto T, Fusetani N, Suganuma M. Tetrahedron Lett. 1997; 38: 3763
  • 5 Steube KG, Meyer C, Proksch P, Supriyono A, Sumaryono W, Drexler HG. Anticancer Res. 1998; 18: 129
  • 6 Fu X, Schmitz FJ, Kelly-Borges M, McCready TL, Holmes CF. B. J. Org. Chem. 1998; 63: 7957
  • 7 Wakimoto T, Egami Y, Abe I. Nat. Prod. Rep. 2016; 33: 751
  • 8 Fagerholm AE, Habrant D, Koskinen AM.P. Mar. Drugs 2010; 8: 122
  • 9 Evans DA, Gage JR, Leighton JL. J. Am. Chem. Soc. 1992; 114: 9434
  • 10 Tanimoto N, Gerritz SW, Sawabe A, Noda T, Filla SA, Masamune S. Angew. Chem., Int. Ed. Engl. 1994; 33: 673
  • 11 Yokokawa F, Hamada Y, Shioiri T. Chem. Commun. 1996; 871
  • 12 Smith AB. III, Friestad GK, Duan JJ.-W, Barbosa J, Hull KG, Iwashima M, Qiu Y, Spoors PG, Bertounesque E, Salvatore BA. J. Org. Chem. 1998; 63: 7596
  • 13 Ogawa AK, Armstrong RW. J. Am. Chem. Soc. 1998; 121: 12435
  • 14 Anderson OP, Barrett AG. M, Edmunds JJ, Hachiya S.-I, Hendrix JA, Horita K, Malecha JW, Parkinson CJ, VanSickle A. Can. J. Chem. 2001; 79: 1562

    • Fragment A:
    • 15a Koskinen AM.P, Chen J. Tetrahedron Lett. 1991; 32: 6977
    • 15b Passiniemi M, Koskinen AM. P. Synthesis 2010; 2816

    • Fragment B:
    • 15c Koskinen AM.P, Pihko PM. Tetrahedron Lett. 1994; 35: 7417
    • 15d Pihko PM, Koskinen AM. P. J. Org. Chem. 1998; 63: 92

    • Fragment C:
    • 15e Habrant D, Koskinen AM. P. Org. Biomol. Chem. 2010; 8: 4364
  • 16 Pihko PM, Koskinen AM. P. Synlett 1999; 1966
  • 17 Barrett AG. M, Edmunds JJ, Hendrix JA, Horita K, Parkinson CJ. J. Chem. Soc., Chem. Commun. 1992; 1238
    • 18a Yokokawa F, Hamada Y, Shioiri T. Tetrahedron Lett. 1993; 34: 6559
    • 18b Matsubara J, Nakao K, Shioiri T. Tetrahedron Lett. 1992; 33: 4187
  • 19 Scarlato GR, DeMattei JA, Chong LS, Ogawa AK, Lin MR, Armstrong RW. J. Org. Chem. 1996; 61: 6139
  • 20 Negishi E. Bull. Chem. Soc. Jpn. 2007; 80: 233
  • 21 Ronson TO, Taylor RJ. K, Fairlamb IJ. S. Tetrahedron 2015; 71: 989
  • 22 Heravi MM, Hashemi E, Azimian F. Tetrahedron 2014; 70: 7
  • 23 Heravi MM, Hashemi E. Tetrahedron 2012; 68: 9145
  • 24 Kosugi M, Fugami K. J. Organomet. Chem. 2002; 653: 50
  • 25 Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738
  • 26 Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
  • 27 Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
  • 28 Corey EJ, Katzenellenbogen JA, Posner GH. J. Am. Chem. Soc. 1967; 89: 4245
  • 29 Betzer J.-F, Delaloge F, Muller B, Pancrazi A, Prunet J. J. Org. Chem. 1997; 62: 7768
  • 30 Jung ME, Light LA. Tetrahedron Lett. 1982; 23: 3851
  • 31 Zhang HX, Guibe F, Balavoine G. J. Org. Chem. 1990; 55: 1857
  • 32 Huang Z, Negishi E. Org. Lett. 2006; 8: 3675
    • 33a Cornil J, Echeverria P.-G, Phansavath P, Ratovelomanana-Vidal V, Guérinot A, Cossy J. Org. Lett. 2015; 17: 948
    • 33b Madden KS, David S, Knowles JP, Whiting A. Chem. Commun. 2015; 51: 11409
    • 33c Jeffery T. Tetrahedron Lett. 1985; 26: 2667
  • 34 Desai NB, McKelvie N, Ramirez F. J. Am. Chem. Soc. 1962; 84: 1745
  • 35 Roush WR, Moriarty KJ, Brown BB. Tetrahedron Lett. 1990; 31: 6509
  • 36 Kim K, Lauher JW, Parker KA. Org. Lett. 2012; 14: 138
  • 37 Sofiyev V, Navarro G, Trauner D. Org. Lett. 2008; 10: 149
  • 38 Jacobsen MF, Moses JE, Adlington RM, Baldwin JE. Tetrahedron 2006; 62: 1675
  • 39 Zeng X, Qian M, Hu Q, Negishi E. Angew. Chem. Int. Ed. 2004; 43: 2259
  • 40 Källström S, Erkkilä A, Pihko PM, Sjöholm R, Sillanpää R, Leino R. Synlett 2005; 751
  • 41 Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769
  • 42 Hart DW, Blackburn TF, Schwartz J. J. Am. Chem. Soc. 1975; 97: 679
  • 43 Dale JA, Dull DL, Mosher HS. J. Org. Chem. 1969; 34: 2543
  • 44 Ward DE, Rhee CK. Tetrahedron Lett. 1991; 32: 7165
    • 45a Crossman JS, Perkins MV. J. Org. Chem. 2006; 71: 117
    • 45b Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 5919
    • 45c Kalaitzakis D, Smonou I. Eur. J. Org. Chem. 2012; 43
  • 46 Moure AL, Gómez Arrayás R, Cárdenas DJ, Alonso I, Carretero JC. J. Am. Chem. Soc. 2012; 134: 7219
  • 47 Mitsudo T, Fischetti W, Heck RF. J. Org. Chem. 1984; 49: 1640
  • 48 Okada A, Watanabe K, Umeda K, Miyakado M. Agric. Biol. Chem. 1991; 55: 2765
  • 49 Zurwerra D, Gertsch J, Altmann K.-H. Org. Lett. 2010; 12: 2302
  • 50 Yang Q, Draghici C, Njardarson JT, Li F, Smith BR, Das P. Org. Biomol. Chem. 2014; 12: 330
  • 51 Placzek AT, Gibbs RA. Org. Lett. 2011; 13: 3576
  • 52 Paterson I, Anderson EA, Dalby SM, Lim JH, Maltas P, Loiseleur O, Genovino J, Moessner C. Org. Biomol. Chem. 2012; 10: 5861