Synthesis 2019; 51(02): 303-333
DOI: 10.1055/s-0037-1610329
review
© Georg Thieme Verlag Stuttgart · New York

Acyl Radical Chemistry via Visible-Light Photoredox Catalysis

Arghya Banerjee
a   Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
,
Zhen Lei
a   Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
,
Ming-Yu Ngai*
a   Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
b   Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, 11794-3400, USA
› Institutsangaben
We thank the National Institute of General Medical Sciences (R35GM119652) for supporting our research.
Weitere Informationen

Publikationsverlauf

Received: 31. August 2018

Accepted after revision: 19. Oktober 2018

Publikationsdatum:
12. Dezember 2018 (online)


These authors contributed equally to this work.

Abstract

Visible-light photoredox catalysis enables easy access to acyl radicals under mild reaction conditions. Reactive acyl radicals, generated from various acyl precursors such as aldehydes, α-keto acids, carboxylic acids, anhydrides, acyl thioesters, acyl chlorides, or acyl silanes, can undergo a diverse range of synthetically useful transformations, which were previously difficult or inaccessible. This review summarizes the recent progress on visible-light-driven acyl radical generation using transition-metal photoredox catalysts, metallaphotocatalysts, hypervalent iodine catalysts or organic photocatalysts.

1 Introduction

2 The Scope of This Review

3 Aldehydes as a Source of Acyl Radicals

4 α-Keto Acids as a Source of Acyl Radicals

5 Carboxylic Acids as a Source of Acyl Radicals

6 Anhydrides as a Source of Acyl Radicals

7 Acyl Thioesters as a Source of Acyl Radicals

8 Acyl Chlorides as a Source of Acyl Radicals

9 Acyl Silanes as a Source of Acyl Radicals

10 Conclusions and Future Outlook

 
  • References

  • 1 Caronna T, Fronza G, Minisci F, Porta O, Gardini GP. J. Chem. Soc., Perkin Trans. 2 1972; 1477
    • 2a Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 2b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 2c Stetter H, Kuhlmann H. Org. React. 2004; 40: 407
  • 3 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
    • 4a Boger DL, Mathvink RJ. J. Org. Chem. 1992; 57: 1429
    • 4b Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
    • 5a Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756
    • 5b Benati L, Calestani G, Leardini R, Minozzi M, Nanni D, Spagnolo P, Strazzari S. Org. Lett. 2003; 5: 1313
    • 5c Bath S, Laso NM, Lopez-Ruiz H, Quiclet-Sire B, Zard SZ. Chem. Commun. 2003; 204
  • 6 Boger DL, Mathvink RJ. J. Org. Chem. 1989; 54: 1777
    • 7a Chen C, Crich D, Papadatos A. J. Am. Chem. Soc. 1992; 114: 8313
    • 7b Crich D, Chen C, Hwang J.-T, Yuan H, Papadatos A, Walter RI. J. Am. Chem. Soc. 1994; 116: 8937
    • 8a Colley CS, Grills DC, Besley NA, Jockusch S, Matousek P, Parker AW, Towrie M, Turro NJ, Gill PM. W, George MW. J. Am. Chem. Soc. 2002; 124: 14952
    • 8b Hristova D, Gatlik I, Rist G, Dietliker K, Wolf J.-P, Birbaum J.-L, Savitsky A, Moebius K, Gescheidt G. Macromolecules 2005; 38: 7714
    • 8c Sluggett GW, Turro C, George MW, Koptyug IV, Turro NJ. J. Am. Chem. Soc. 1995; 117: 5148
  • 9 Yagci Y, Pappas SP, Schnabel W. Z. Naturforsch., A: Phys. Sci. 1987; 42: 1425
    • 10a Brown CE, Neville AG, Rayner DM, Ingold KU, Lusztyk J. Aust. J. Chem. 1995; 48: 363
    • 10b McGimpsey WG, Scaiano JC. J. Am. Chem. Soc. 1987; 109: 2179
    • 10c Neville AG, Brown CE, Rayner DM, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 1991; 113: 1869
    • 10d Davies AG, Sutcliffe R. J. Chem. Soc., Perkin Trans. 2 1980; 819
    • 11a Rosenthal I, Mossoba MM, Riesz P. Can. J. Chem. 1982; 60: 1486
    • 11b Miranda MA, Galindo F. Photo-Fries Reaction and Related Processes . In CRC Handbook of Organic Photochemistry and Photobiology . Horspool W, Lenci F. CRC Press; Boca Raton: 2004: 42-1
    • 12a Coveney DJ, Patel VF, Pattenden G. Tetrahedron Lett. 1987; 28: 5949
    • 12b Coveney DJ, Patel VF, Pattenden G, Thompson DM. J. Chem. Soc., Perkin Trans. 1 1990; 2721
    • 13a Wang H, Guo L.-N, Duan X.-H. Adv. Synth. Catal. 2013; 355: 2222
    • 13b Chaubey NR, Singh KN. Tetrahedron Lett. 2017; 58: 2347
    • 13c Meng M, Wang G, Yang L, Cheng K, Qi C. Adv. Synth. Catal. 2018; 360: 1218
  • 14 Wu X.-F. Chem. Eur. J. 2015; 21: 12252
    • 15a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 15b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 15c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 15d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 15e Karkas MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 15f Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
    • 15g Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 16 Xiao W.-J, Zhou Q.-Q, Zou Y.-Q, Lu L.-Q. Angew. Chem. Int. Ed. 2018; DOI: in press; 10.1002/anie.201803102.
  • 17 Luca C, Davide R. Eur. J. Org. Chem. 2017; 2056
  • 18 Shi Z, Glorius F. Chem. Sci. 2013; 4: 829
  • 19 Jhuang H.-S, Reddy DM, Chen T.-H, Lee C.-F. Asian J. Org. Chem. 2016; 5: 1452
  • 20 Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
  • 21 Fan XZ, Rong JW, Wu HL, Zhou Q, Deng HP, Tan JD, Xue CW, Wu LZ, Tao HR, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
    • 22a Shum LG, Benson SW. Int. J. Chem. Kinet. 1983; 15: 433
    • 22b Simoes JM, Griller D. Chem. Phys. Lett. 1989; 158: 175
    • 22c Berkowitz J, Ellison GB, Gutman D. J. Phys. Chem. 1994; 98: 2744
    • 22d Bordwell FG, Satish A. J. Am. Chem. Soc. 1994; 116: 8885
    • 22e Bordwell FG, Liu W.-Z. J. Am. Chem. Soc. 1996; 118: 10819
    • 22f Lund H, Daasbjerg K, Ochiallini D, Pedersen S. Russian Journal of Electrochemistry 1995; 31: 865-72
    • 22g Liu W.-Z, Bordwell FG. J. Org. Chem. 1996; 61: 4778
    • 22h Atkinson R, Baulch D, Cox RA, Hampson RF. Jr, Kerr JA, Rossi MJ, Troe J. J. Phys. Chem. Ref. Data 2000; 29: 167
    • 22i Ervin KM, DeTuri VF. J. Phys. Chem. A 2002; 106: 9947
    • 22j Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press; Boca Raton: 2002
  • 23 Iqbal N, Choi S, You Y, Cho EJ. Tetrahedron Lett. 2013; 54: 6222
  • 24 Teegardin K, Day JI, Chan J, Weaver J. Org. Process Res. Dev. 2016; 20: 1156
  • 25 Cheng P, Qing Z, Liu S, Liu W, Xie H, Zeng J. Tetrahedron Lett. 2014; 55: 6647
  • 26 White HS, Bard AJ. J. Am. Chem. Soc. 1982; 104: 6891
  • 27 Natascia T, Ulrich N, Alfons B, Jozef P, Ive H. Chem. Eur. J. 2010; 16: 13226
  • 28 Li J, Wang DZ. Org. Lett. 2015; 17: 5260
  • 29 Jung S, Kim J, Hong S. Adv. Synth. Catal. 2017; 359: 3945
  • 30 Iqbal N, Cho EJ. J. Org. Chem. 2016; 81: 1905
  • 31 Mukherjee S, Garza-Sanchez RA, Tlahuext-Aca A, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 14723
  • 32 Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
  • 33 Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
  • 34 Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
  • 35 Vu MD, Das M, Liu XW. Chem. Eur. J. 2017; 23: 15899
  • 36 Kawaai K, Yamaguchi T, Yamaguchi E, Endo S, Tada N, Ikari A, Itoh A. J. Org. Chem. 2018; 83: 1988
  • 37 Allen NS, Hurley JP, Bannister D, Follows GW, Navaratnam S, Parsons BJ. J. Photochem. Photobiol., A 1992; 68: 213
  • 38 Majek M, Filace F, von Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
  • 39 We used benzaldehyde as the hydrogen donor to illustrate the mechanism.
  • 40 de Souza GF, Bonacin JA, Salles AG. Jr. J. Org. Chem. 2018; 83: 8331
  • 41 Furman OS, Teel AL, Watts RJ. Environ. Sci. Technol. 2010; 44: 6423
    • 42a Tanielian C, Mechin R. J. Photochem. Photobiol., A 1997; 107: 291
    • 42b Erickson PR, Walpen N, Guerard JJ, Eustis SN, Arey JS, McNeill K. J. Phys. Chem. A 2015; 119: 3233
  • 43 Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
  • 44 Young RC, Meyer TJ, Whitten DG. J. Am. Chem. Soc. 1976; 98: 286
  • 45 Chu L, Lipshultz JM, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
  • 46 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
    • 47a Tsuji J, Yamada T, Minami I, Yuhara M, Nisar M, Shimizu I. J. Org. Chem. 1987; 52: 2988
    • 47b Gooßen LJ, Zimmermann B, Knauber T. Angew. Chem. Int. Ed. 2008; 47: 7103
    • 47c Shang R, Yang Z.-W, Wang Y, Zhang S.-L, Liu L. J. Am. Chem. Soc. 2010; 132: 14391
    • 47d Weaver JD, Ka BJ, Morris DK, Thompson W, Tunge JA. J. Am. Chem. Soc. 2010; 132: 12179
    • 47e Gooßen LJ, Lange PP, Rodriguez N, Linder C. Chem. Eur. J. 2010; 16: 3906
    • 47f Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
    • 47g Shang R, Ji D.-S, Chu L, Fu Y, Liu L. Angew. Chem. Int. Ed. 2011; 50: 4470
    • 47h Hu P, Zhang M, Jie X, Su W. Angew. Chem. Int. Ed. 2012; 51: 227
    • 47i Fromm A, van Wuellen C, Hackenberger D, Gooßen LJ. J. Am. Chem. Soc. 2014; 136: 10007
  • 48 Gooßen LJ, Rudolphi F, Oppel C, Rodriguez N. Angew. Chem. Int. Ed. 2008; 47: 3043
  • 49 Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
  • 50 Zhou C, Li P, Zhu X, Wang L. Org. Lett. 2015; 17: 6198
  • 51 Xu N, Li P, Xie Z, Wang L. Chem. Eur. J. 2016; 22: 2236
  • 52 Wang G.-Z, Shang R, Cheng W.-M, Fu Y. Org. Lett. 2015; 17: 4830
  • 53 Zhang M, Xi J, Ruzi R, Li N, Wu Z, Li W, Zhu C. J. Org. Chem. 2017; 82: 9305
  • 55 Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
  • 56 Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Top. Curr. Chem. 2007; 281: 143
  • 57 Bai Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
  • 58 Huang H, Zhang G, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 7872
  • 59 Tan H, Li H, Ji W, Wang L. Angew. Chem. Int. Ed. 2015; 54: 8374
  • 60 Ji W, Tan H, Wang M, Li P, Wang L. Chem. Commun. 2016; 52: 1462
  • 61 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 62 Bergonzini G, Cassani C, Wallentin C.-J. Angew. Chem. Int. Ed. 2015; 54: 14066
  • 63 Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
  • 64 Candish L, Freitag M, Gensch T, Glorius F. Chem. Sci. 2017; 8: 3618
  • 65 Chateauneuf J, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 1988; 110: 2886
  • 66 Pettersson F, Bergonzini G, Cassani C, Wallentin C.-J. Chem. Eur. J. 2017; 23: 7444
  • 67 Zhang M, Ruzi R, Xi J, Li N, Wu Z, Li W, Yu S, Zhu C. Org. Lett. 2017; 19: 3430
  • 68 Zhang M, Li N, Tao X, Ruzi R, Yu S, Zhu C. Chem. Commun. 2017; 53: 10228
  • 69 Ruzi R, Zhang M, Ablajan K, Zhu C. J. Org. Chem. 2017; 82: 12834
  • 70 Zhang M, Xie J, Zhu C. Nat. Commun. 2018; 9: 3517
  • 71 Pandey G, Pooranchand D, Bhalerao UT. Tetrahedron 1991; 47: 1745
  • 72 Stache EE, Ertel AB, Rovis T, Doyle AG. ACS Catal. 2018; 8: 11134
  • 73 Bergonzini G, Cassani C, Lorimer-Olsson H, Hoerberg J, Wallentin C.-J. Chem. Eur. J. 2016; 22: 3292
  • 74 Dong S, Wu G, Yuan X, Zou C, Ye J. Org. Chem. Front. 2017; 4: 2230
  • 75 Zhu X.-Q, Li H.-R, Li Q, Ai T, Lu J.-Y, Yang Y, Cheng J.-P. Chem. Eur. J. 2003; 9: 871
  • 76 Ociepa M, Baka O, Narodowiec J, Gryko D. Adv. Synth. Catal. 2017; 359: 3560
  • 77 Norman AR, Yousif MN, McErlean C. Org. Chem. Front. 2018; 5: 3267
  • 78 Crich D, Yao Q. J. Org. Chem. 1996; 61: 3566
  • 79 Fry AJ, Krieger RL. J. Org. Chem. 1976; 41: 54
  • 80 van der Kerk GJ. M, Noltes JG, Luijten JG. A. J. Appl. Chem. 1957; 7: 356
  • 81 Kuivila HG. J. Org. Chem. 1960; 25: 284
  • 82 Kuivila HG, Walsh EJ. Jr. J. Am. Chem. Soc. 1966; 88: 571
    • 83a Girard P, Couffignal R, Kagan HB. Tetrahedron Lett. 1981; 22: 3959
    • 83b Souppe J, Namy JL, Kagan HB. Tetrahedron Lett. 1984; 25: 2869
    • 84a Li C.-G, Xu G.-Q, Xu P.-F. Org. Lett. 2017; 19: 512
    • 84b Xu S.-M, Chen J.-Q, Liu D, Bao Y, Liang Y.-M, Xu P.-F. Org. Chem. Front. 2017; 4: 1331
    • 84c Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-a, Tang K.-W. J. Org. Chem. 2018; 83: 2210
    • 84d Wang CM, Song D, Xia PJ, Wang J, Xiang HY, Yang H. Chem. Asian. J. 2018; 13: 271
  • 85 Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Kang S.-J, Yang C.-A, Tang K.-W. Tetrahedron Lett. 2018; 59: 2038
  • 86 Mi X, Wang C, Huang M, Wu Y, Wu Y. J. Org. Chem. 2015; 80: 148
  • 87 Yan K, Yang D, Wei W, Wang F, Shuai Y, Li Q, Wang H. J. Org. Chem. 2015; 80: 1550
  • 88 Brook AG. J. Am. Chem. Soc. 1957; 79: 4373
    • 89a Page PC. B, Klair SS, Rosenthal S. Chem. Soc. Rev. 1990; 19: 147
    • 89b Zhang H.-J, Priebbenow DL, Bolm C. Chem. Soc. Rev. 2013; 42: 8540
    • 90a Brook AG, Duff JM. J. Am. Chem. Soc. 1969; 91: 2118
    • 90b Brook AG, Dillon PJ, Pearce R. Can. J. Chem. 1971; 49: 133
    • 91a Kunio M, Shuko O, Kyoko I, Osamu K, Tohru T, Keiji Y. Chem. Lett. 1986; 15: 805
    • 91b Yoshida J.-i, Matsunaga S.-i, Isoe S. Tetrahedron Lett. 1989; 30: 5293
    • 91c Yoshida J, Itoh M, Matsunaga S, Isoe S. J. Org. Chem. 1992; 57: 4877
  • 92 Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal. 2017; 8: 304
  • 93 Rillema DP, Allen G, Meyer TJ, Conrad D. Inorg. Chem. 1983; 22: 1617
  • 94 Waele VD, Poizat O, Fagnoni M, Bagno A, Ravelli D. ACS Catal. 2016; 6: 7174
  • 95 Tsudaka T, Kotani H, Ohkubo K, Nakagawa T, Tkachenko NV, Lemmetyinen H, Fukuzumi S. Chem. Eur. J. 2017; 23: 1306
  • 96 Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232