Synthesis 2018; 50(24): 4777-4795
DOI: 10.1055/s-0037-1610311
short review
© Georg Thieme Verlag Stuttgart · New York

Macrocyclic Hosts in Asymmetric Phase-Transfer Catalyzed Reactions

,
Marina Sicignano
,
,
,
Dipartimento di Chimica e Biologia ‘A. Zambelli’, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy   Email: gdsala@unisa.it
› Author Affiliations
The University of Salerno is gratefully acknowledged for funding (FARB).
Further Information

Publication History

Received: 27 August 2018

Accepted after revision: 28 September 2018

Publication Date:
22 October 2018 (online)


Abstract

The introduction and development of neutral macrocyclic hosts capable of complexing ions within their pre-organized cavity, has been of utmost importance in supramolecular chemistry. Their ability to form stable organic-soluble metal–macrocycle complexes opened up the way to their application in phase-transfer catalysis (PTC) as a viable alternative to quaternary onium salts. In particular, their conformationally rigid preorganized backbone, accommodating organic substrates in defined orientations, promotes highly efficient stereoselective reactions. This short review summarizes the applications of neutral macrocyclic hosts in stereoselective PTC, highlighting the difference and possible complementarity with quaternary ammonium salts.

1 Introduction

2 Crown Ethers and Related Coronands

2.1 Enantioselective PTC with Chiral Macrocyclic Coronands

2.2 Enantioselective PTC Reactions Catalyzed by Chiral Quaternary Ammonium Salts with Achiral Crown Ether Co-catalysts

3 Cyclic Peptoids

4 Miscellaneous Chiral Macrocyclic Hosts

5 Summary and Outlook

 
  • References

    • 1a Starks CM. Liotta CL. Halpern ME. Phase-Transfer Catalysis, Fundamentals, Applications, and Industrial Perspectives. Chapman & Hall; New York: 1994
    • 1b Phase-Transfer Catalysis, Fundamentals, Mechanisms and Syntheses. Halpern ME. American Chemical Society; Washington, DC: 1997
    • 1c Starks CM. Liotta CL. Phase-Transfer Catalysis, Principles and Techniques. Academic Press; New York: 1978
    • 1d Handbook of Phase-Transfer Catalysis. Sasson Y. Neumann R. Chapman & Hall; London: 1997
    • 1e Albanese D. Catal. Rev.: Sci. Eng. 2003; 45: 369
    • 1f Naik SD. Doraiswamy LK. AIChE J. 1998; 44: 612
    • 2a Ikunaka M. Org. Process Res. Dev. 2008; 12: 698
    • 2b Freedman HH. Pure Appl. Chem. 1986; 58: 857
    • 2c Sharma M. In Handbook of Phase-Transfer Catalysis. Sasson Y. Neumann R. Chapman Hall; London: 1997: 168
    • 2d Fedoryński M. Jezierska-Zięba M. Kąkol B. Acta Pol. Pharm. 2008; 65: 647
    • 2e Tan J. Yasuda N. Org. Process Res. Dev. 2015; 19: 1731
    • 3a Mąkosza M. In Handbook of Phase-Transfer Catalysis. Sasson Y. Neumann R. Chapman Hall; London: 1997: 135
    • 3b Mąkosza M. In Phase-Transfer Catalysis, Fundamentals, Mechanisms and Syntheses. Halpern ME. American Chemical Society; Washington, DC: 1997: 41
    • 3c Mąkosza M. Pure Appl. Chem. 2000; 72: 1399
  • 4 Mąkosza M. Pure Appl. Chem. 1975; 43: 439
    • 5a Asymmetric Phase Transfer Catalysis. Maruoka K. Wiley-VCH; Weinheim: 2008
    • 5b Shirakawa S. Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 5c Ooi T. Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
    • 5d Kaneko S. Kumatabara Y. Shirakawa S. Org. Biomol. Chem. 2016; 14: 5367
    • 5e Jew S.-s. Park H.-g. Chem. Commun. 2009; 7090
    • 5f Albanese DC. M. Foschi F. Penso M. Org. Process Res. Dev. 2016; 20: 129
    • 5g Hashimoto T. Maruoka K. Chem. Rev. 2007; 107: 5656

      For selected examples:
    • 6a He R. Wang X. Hashimoto T. Maruoka K. Angew. Chem. Int. Ed. 2008; 47: 9466
    • 6b Zhu C.-L. Zhang F.-G. Meng W. Nie J. Cahard D. Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 5869
    • 6c Shirakawa S. Kasai A. Tokuda T. Maruoka K. Chem. Sci. 2013; 4: 2248
    • 6d Shirakawa S. Tokuda T. Kasai A. Maruoka K. Org. Lett. 2013; 15: 3350
    • 6e Shirakawa S. Koga K. Tokuda T. Yamamoto K. Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 6220
    • 6f Cao D. Chai Z. Zhang J. Ye Z. Xiao H. Wang H. Chen J. Wu X. Zhao G. Chem. Commun. 2013; 49: 5972

      For selected examples:
    • 7a Ohmatsu K. Kiyokawa M. Ooi T. J. Am. Chem. Soc. 2011; 133: 1307
    • 7b Uraguchi D. Sasaki S. Ooi T. J. Am. Chem. Soc. 2007; 129: 12392
    • 7c Wang C. Zong L. Tan C.-H. J. Am. Chem. Soc. 2015; 137: 10677
    • 7d Kita T. Georgieva A. Hashimoto Y. Nakata T. Nagasawa K. Angew. Chem. Int. Ed. 2002; 41: 2832
    • 7e Howard-Jones A. Caulkett PW. R. Murphy PJ. Thomas D. J. Org. Chem. 1999; 64: 1039
    • 7f Belokon YN. I. Maleev V. North M. Larionov VA. Savel’yeva TF. Nijland A. Nelyubina YV. ACS Catal. 2013; 3: 1951
    • 8a Liotta CL. Harris HP. J. Am. Chem. Soc. 1974; 96: 2250
    • 8b Pedersen CJ. Frensdorff HK. Angew. Chem., Int. Ed. Engl. 1972; 11: 16
    • 9a Xia L. Jia Y. Tong S. Wang J. Han G. Kinet. Catal. 2010; 51: 69
    • 9b Shirakawa S. Yamamoto K. Kitamura M. Ooi T. Maruoka K. Angew. Chem. Int. Ed. 2005; 44: 625
  • 10 Landini D. Maia A. Montanari F. Pirisi F. J. Chem. Soc., Perkin Trans. 2 1980; 46
  • 11 Gobbi A. Landini D. Maia A. Petricci S. J. Org. Chem. 1998; 63: 5356
    • 12a Liotta CL. Berkner J. Wright J. Fair B. In Phase-Transfer Catalysis, Fundamentals, Mechanisms and Syntheses. Halpern ME. American Chemical Society; Washington, DC: 1997: 29
    • 12b Pliego JR. Jr. Riveros JM. J. Mol. Catal. A: Chem. 2012; 363–364: 489
    • 13a Esikova IA. In Handbook of Phase-Transfer Catalysis. Sasson Y. Neumann R. Chapman & Hall; London: 1997: 1
    • 13b Albanese D. Landini D. Maia M. Penso M. Ind. Eng. Chem. Res. 2001; 2396
    • 13c Starks CM. Owens RM. J. Am. Chem. Soc. 1973; 95: 3613
    • 13d Dermeik S. Sasson Y. J. Org. Chem. 1985; 50: 879
    • 13e Zahalka HA. Sasson Y. J. Chem. Soc., Chem. Commun. 1984; 1652
    • 13f Yee HA. Palmer HJ. Chen SH. Chem. Eng. Prog. 1987; 83: 33
    • 13g Czech BP. Pugia MJ. Bartsch R. Tetrahedron 1985; 41: 5439
    • 13h Dehmlow EV. Raths HC. J. Chem. Res., Synop. 1988; 384
    • 14a Dehmlow EV. In Phase-Transfer Catalysis, Fundamentals, Mechanisms and Syntheses. Halpern ME. American Chemical Society; Washington, DC: 1997: 108 ; and references cited therein
    • 14b Reinholz E. Becker A. Hagenbruch B. Schäfer S. Schmitt A. Synthesis 1990; 1069
    • 14c Della Sala G. Sicignano M. Schettini R. De Riccardis F. Cavallo L. Minenkov Y. Batisse C. Hanquet G. Leroux F. Izzo I. J. Org. Chem. 2017; 82: 6629
  • 15 Maia A. Landini D. Petricci S. Supramol. Chem. 2000; 12: 203
    • 16a Weber E. Vögtle F. In Host Guest Complex Chemistry – Macrocycles – Synthesis, Structures, Applications. Weber E. Vögtle F. Springer; Berlin: 1985: 1
    • 16b Smid J. Angew. Chem., Int. Ed. Engl. 1972; 11: 112
  • 17 Landini D. Maia A. Montanari F. J. Am. Chem. Soc. 1984; 106: 2917
    • 18a Comprehensive Supramolecular Chemistry II. Gokel GW. Atwood JL. Elsevier; Amsterdam: 2017. 2nd ed., Vol. 1
    • 18b Comprehensive Supramolecular Chemistry II. Rissanen K. Elsevier; Amsterdam: 2017. 2nd ed., Vol. 3
    • 18c Macrocyclic Chemistry: Current Trends and Future Perspectives. Gloe K. Springer; Dordrecht: 2005
    • 18d Gokel GW. Leevy WM. Weber ME. Chem. Rev. 2004; 104: 2723
    • 18e Liu Z. Nalluri SK. M. Stoddart JF. Chem. Soc. Rev. 2017; 46: 2459
    • 18f Reinhoudt DN. van Veggel FC. J. M. Pure Appl. Chem. 1993; 65: 965
    • 18g Izatt RM. Pawlak K. Bradshaw JS. Chem. Rev. 1995; 95: 2529
    • 19a Vaquero M. Rovira L. Vidal-Ferran A. Chem. Commun. 2016; 52: 11038
    • 19b Supramolecular Catalysis. van Leeuwen PW. N. M. Wiley-VCH; Weinheim: 2008
    • 19c Sasaki S. Koga K. In Crown Ethers and Analogous Compounds. Hiraoka M. Elsevier; Amsterdam: 1992: 265
    • 19d Kellogg RM. Angew. Chem., Int. Ed. Engl. 1984; 23: 782
    • 19e Dong Z. Luo Q. Liu J. Chem. Soc. Rev. 2012; 41: 7890
  • 20 Cram DJ. Sogah GD. Y. J. Chem. Soc., Chem. Commun. 1981; 625
  • 21 Sutherland IO. J. Chem. Soc., Faraday Trans. 1986; 82: 1145
    • 22a Tarí S. Chinchilla R. Nájera C. Tetrahedron: Asymmetry 2010; 21: 2872
    • 22b Park EJ. Kim MH. Kim DY. J. Org. Chem. 2004; 69: 6897
    • 22c Alvarez R. Hourdin M.-A. Cavé C. d’Angelo J. Chaminade P. Tetrahedron Lett. 1999; 40: 7091
  • 23 Cram DJ. Sogah GD. Y. J. Am. Chem. Soc. 1985; 107: 8301
  • 24 Takasu M. Wakabayashi H. Furuta K. Yamamoto H. Tetrahedron Lett. 1988; 29: 6943
  • 25 Aoki S. Sasaki S. Koga K. Tetrahedron Lett. 1989; 30: 7229
  • 26 Dehmlow EV. Knufinke V. Liebigs Ann. Chem. 1992; 283
  • 27 Crosby J. Stoddart JF. Sun X. Venner MR. W. Synthesis 1993; 141
  • 28 Brunet E. Poveda AM. Rabasco D. Oreja E. Font LM. Batra MS. Rodríguez-Ubis JC. Tetrahedron: Asymmetry 1994; 5: 935
  • 29 Nair V. Prabhakarana J. Eigendod GK. Synth. Commun. 1997; 27: 3095
  • 30 Xie J. Bogliotti N. Chem. Rev. 2014; 114: 7678
    • 31a Alonso-López M. Martín-Lomas M. Penadés S. Tetrahedron Lett. 1986; 27: 3551
    • 31b Jimenez-Barbero J. Martín-Lomas M. Penadés S. Tetrahedron 1988; 44: 1535
  • 32 van Maarschalkerwaart DA. H. Willard NP. Pandit UK. Tetrahedron 1992; 48: 8825
  • 33 Kanakamma PP. Mani NS. Maitra U. Nair V. J. Chem. Soc., Perkin Trans. 1 1995; 2339
  • 34 Dondoni A. Marra A. Tetrahedron Lett. 2009; 50: 3593
    • 35a Tőke L. Bakó P. Keserű GM. Albert M. Fenichel L. Tetrahedron 1998; 54: 213
    • 35b Tőke L. Fenichel L. Albert M. Tetrahedron Lett. 1995; 36: 5951
  • 36 A similar enantioselectivity in the addition of 10 to 8 catalyzed by a chiral tripodal oxazoline host (82% ee) has been reported: Kim S.-G. Ahn KH. Tetrahedron Lett. 2001; 42: 4175

    • For selected examples of highly enantioselective alkylation with alkyl halides see:
    • 37a Ooi T. Kameda M. Maruoka K. J. Am. Chem. Soc. 1999; 121: 6519
    • 37b Kitamura M. Shirakawa S. Maruoka K. Angew. Chem. Int. Ed. 2005; 44: 1549
    • 37c Han Z. Yamaguchi Y. Kitamura M. Maruoka K. Tetrahedron Lett. 2005; 46: 8555
    • 37d Lygo B. Allbutt B. James SR. Tetrahedron Lett. 2003; 44: 5629
    • 37e Jew S.-S. Yoo M.-S. Jeong B.-S. Park IY. Park H.-G. Org. Lett. 2002; 4: 4245
    • 37f Yoo M.-S. Jeong B.-S. Lee JH. Park H.-G. Jew S.-S. Org. Lett. 2005; 7: 1129

      For examples of highly enantioselective Michael addition with vinyl acceptors, see:
    • 38a Lygo B. Beynon C. Lumley C. McLeod MC. Wade CE. Tetrahedron Lett. 2009; 50: 3363
    • 38b Lygo B. Allbutt B. Kirton EH. M. Tetrahedron Lett. 2005; 46: 4461
    • 38c Wang Y.-G. Kumano T. Kano T. Maruoka K. Org. Lett. 2009; 11: 2027
    • 38d Corey EJ. Noe MC. Xu F. Tetrahedron Lett. 1998; 39: 5347
    • 38e Bernardi L. López-Cantarero J. Niess B. Jørgensen KA. J. Am. Chem. Soc. 2007; 129: 5772
    • 38f Ma T. Fu X. Kee CW. Zong L. Pan Y. Huang K.-W. Tan C.-H. J. Am. Chem. Soc. 2011; 133: 2828
    • 38g Sheshenev AE. Boltukhina EV. White AJ. P. Hii KK. Angew. Chem. Int. Ed. 2013; 52: 6988
  • 39 Itoh T. Shirakami S. Heterocycles 2001; 55: 37
  • 40 Yonezawa K. Patil ML. Sasai H. Takizawa S. Heterocycles 2005; 66: 639
  • 41 Akiyama T. Hara M. Fuchibe K. Sakamoto S. Yamaguchi K. Chem. Commun. 2003; 1734

    • For more enantioselective additions of N-(diphenylmethylene)glycine esters to acrylonitrile under PTC conditions, see:
    • 42a Zhang F.-Y. Corey EJ. Org. Lett. 2000; 2: 1097
    • 42b ref. 38b
    • 42c Chinchilla R. Mazón P. Nájera C. Ortega FJ. Yus M. ARKIVOC 2005; vi: 222 ; http://www.arkat-usa.org/home
    • 42d Maleev VI. North M. Larionov VA. Fedyanin IV. Savel’yeva TF. Moscalenko MA. Smolyakov AF. Belokon YN. Adv. Synth. Catal. 2014; 356: 1803
  • 43 Pham TS. Czirok JB. Balázs L. Pál K. Kubinyi M. Bitter I. Jászay Z. Tetrahedron: Asymmetry 2011; 22: 480
    • 44a Jászay Z. Pham TS. Németh G. Bakó P. Petneházy I. Tőke L. Synlett 2009; 1429
    • 44b Pham TS. Rapi Z. Bakó P. Petneházy I. Stirling A. Jászay Z. New J. Chem. 2017; 41: 14945
  • 45 Jászay Z. Tódor I. Rapi Z. Bakó P. Petneházy I. Tőke L. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 659
  • 46 de Vries EF. J. Ploeg L. Colao M. Brussee J. van der Gen A. Tetrahedron: Asymmetry 1995; 6: 1123
    • 47a Masui M. Ando A. Shioiri T. Tetrahedron Lett. 1988; 29: 2835
    • 47b Dehmlow EV. Düttmann S. Neumann B. Stammler H.-G. Eur. J. Org. Chem. 2002; 2087
  • 48 Sim S.-BD. Wang M. Zhao Y. ACS Catal. 2015; 5: 3609
  • 49 Stoddart JF. Biochem. Soc. Trans. 1987; 15: 1188
  • 50 Dehmlow EV. Sauerbier C. Liebigs Ann. Chem. 1989; 181
  • 51 Aoki S. Sasaki S. Koga K. Heterocycles 1992; 33: 493
  • 52 Bakó P. Szöllősy Á. Bombicz P. Tőke L. Synlett 1997; 291
    • 53a Bakó P. Kiss T. Tőke L. Tetrahedron Lett. 1997; 38: 7259
    • 53b Bakó P. Bajor Z. Tőke L. J. Chem. Soc., Perkin Trans. 1 1999; 3651
    • 54a Bakó P. Vizvárdi K. Toppet S. Van der Eycken E. Hoornaert GJ. Tőke L. Tetrahedron 1998; 54: 14975
    • 54b Bakó P. Vizvárdi K. Bajor Z. Tőke L. Chem. Commun. 1998; 1193
  • 55 Bakó P. Czinege E. Bakó T. Czugler M. Tőke L. Tetrahedron: Asymmetry 1999; 10: 4539
  • 56 Bakó P. Keglevich G. Rapi Z. Lett. Org. Chem. 2010; 7: 645
  • 57 Novák T. Tatai J. Bakó P. Czugler M. Keglevich G. Tőke L. Synlett 2001; 424
  • 58 Bakó P. Makó A. Keglevich G. Kubinyi M. Pál K. Tetrahedron: Asymmetry 2005; 16: 1861
  • 59 Makó A. Szöllősy Á. Keglevich G. Menyhárd DK. Bakó P. Tőke L. Monatsh Chem. 2008; 139: 525
  • 60 Bakó P. Tőke L. Szöllősy Á. Bombicz P. Heteroat. Chem. 1997; 8: 333
  • 61 Novák T. Bakó P. Keglevich G. Greiner I. Phosphorus, Sulfur Silicon Relat. Elem. 2007; 182: 2449
  • 62 Rapi Z. Nemcsok T. Pálvölgyi Á. Keglevich G. Grün A. Bakó P. Chirality 2017; 29: 257
  • 63 Szabó T. Rapi Z. Keglevich G. Szöllősy Á. Drahos L. Bakó P. ARKIVOC 2012; viii: 36 ; http://www.arkat-usa.org/home
  • 64 Bakó P. Bakó T. Bisztray K. Szöllősy Á. Nagy K. Tőke L. J. Incl. Phenom. Macrocycl. Chem. 2001; 39: 247
  • 65 Bakó T. Bakó P. Keglevich G. Báthori N. Czugler M. Tatai J. Novák T. Parlagh G. Tőke L. Tetrahedron: Asymmetry 2003; 14: 1917
  • 66 Makó A. Rapi Z. Drahos L. Szöllősy Á. Keglevich G. Bakó P. Lett. Org. Chem. 2010; 7: 424
  • 67 Bakó T. Bakó P. Szöllősy Á. Czugler M. Keglevich G. Tőke L. Tetrahedron: Asymmetry 2002; 13: 203
  • 68 Makó A. Rapi Z. Keglevich G. Szöllősy Á. Drahos L. Hegedűs L. Bakó P. Tetrahedron: Asymmetry 2010; 21: 919
    • 69a Bakó T. Bakó P. Keglevich G. Bombicz P. Kubinyi M. Pál K. Bodor S. Makó A. Tőke L. Tetrahedron: Asymmetry 2004; 15: 1589
    • 69b Bakó P. Bakó T. Mészáros A. Keglevich G. Szöllősy Á. Bodor S. Makó A. Tőke L. Synlett 2004; 643
    • 69c Rapi Z. Szabó T. Keglevich G. Szöllősy Á. Drahos L. Bakó P. Tetrahedron: Asymmetry 2011; 22: 1189
  • 70 Makó A. Menyhárd DK. Bakó P. Keglevich G. Tőke L. J. Mol. Struct. 2008; 892: 336

    • For selected examples, see:
    • 71a Corey EJ. Zhang F.-Y. Org. Lett. 1999; 1: 1287
    • 71b Ooi T. Ohara D. Tamura M. Maruoka K. J. Am. Chem. Soc. 2004; 126: 6844
    • 71c Yoo M.-S. Kim D.-G. Ha MW. Jew S.-s. Park H.-g. Jeong B.-S. Tetrahedron Lett. 2010; 51: 5601
    • 71d Jew S.-s. Lee J.-H. Jeong B.-S. Yoo M.-S. Kim M.-J. Lee Y.-J. Lee J. Choi S.-h. Lee K. Lah MS. Park H.-g. Angew. Chem. Int. Ed. 2005; 44: 1383
    • 71e Lygo B. Gardiner SD. McLeod MC. To DC. M. Org. Biomol. Chem. 2007; 5: 2283
    • 71f Lygo B. Wainwright PG. Tetrahedron 1999; 55: 6289
  • 72 Adam W. Rao PB. Degen H.-G. Saha-Möller CR. Tetrahedron: Asymmetry 2001; 12: 121
  • 73 Rapi Z. Bakó P. Keglevich G. Szöllősy Á. Drahos L. Botyánszki A. Holczbauer T. Tetrahedron: Asymmetry 2012; 23: 489
  • 74 Arai S. Shirai Y. Ishida T. Shioiri T. Tetrahedron 1999; 55: 6375
  • 75 Liu Y. Provencher BA. Bartelson KJ. Deng L. Chem. Sci. 2011; 2: 1301
    • 76a Rapi Z. Démuth B. Keglevich G. Grün A. Drahos L. Sóti PL. Bakó P. Tetrahedron: Asymmetry 2014; 25: 141
    • 76b Bakó P. Rapi Z. Keglevich G. Szabó T. Sóti PL. Vígh T. Grün A. Holczbauer T. Tetrahedron Lett. 2011; 52: 1473
  • 77 Sóti PL. Telkes L. Rapi Z. Tóth A. Vígh T. Nagy ZK. Bakó P. Marosi G. J. Inorg. Organomet. Polym. 2014; 24: 713
  • 78 Rapi Z. Bakó P. Drahos L. Keglevich G. Heteroat. Chem. 2015; 26: 63
  • 79 Pálvölgyi Á. Rapi Z. Ozohanics O. Tóth G. Keglevich G. Bakó P. Res. Chem. Intermed. 2018; 44: 1627
  • 80 Nemcsok T. Rapi Z. Keglevich G. Grün A. Bakó P. Chirality 2018; 30: 407
  • 81 Rapi Z. Grün A. Keglevich G. Stirling A. Bakó P. New J. Chem. 2016; 40: 7856
  • 82 Bakó P. Rapi Z. Grün A. Nemcsok T. Hegedűs L. Keglevich G. Synlett 2015; 26: 1847
  • 83 Rapi Z. Grün A. Nemcsok T. Hessz D. Kállay M. Kubinyi M. Keglevich G. Bakó P. Tetrahedron: Asymmetry 2016; 27: 960
    • 84a Perrard T. Plaquevent L.-C. Desmurs J.-R. Hebrault D. Org. Lett. 2000; 2: 2959
    • 84b Ooi T. Ohara D. Fukumoto K. Maruoka K. Org. Lett. 2005; 7: 3195
    • 84c Jayaraman S. Kumaraguru D. Arockiam JB. Paulpandian S. Rajendiran B. Siva A. Synlett 2014; 25: 1685
    • 85a Loupy A. Sansoulet J. Zaparucha A. Merienne C. Tetrahedron Lett. 1989; 30: 333
    • 85b Mirza-Aghayan M. Etemad-Moghadam G. Zaparucha A. Berlan J. Loupy A. Koenig M. Tetrahedron: Asymmetry 1995; 6: 2643
  • 86 Yasuda K. Shindo M. Koga K. Tetrahedron Lett. 1996; 37: 6343
  • 87 Rapi Z. Nemcsok T. Grün A. Pálvölgyi Á. Samu G. Hessz D. Kubinyi M. Kállay M. Keglevich G. Bakó P. Tetrahedron 2018; 74: 3512
    • 88a Herchl R. Waser M. Tetrahedron Lett. 2013; 54: 2472
    • 88b Herchl R. Waser M. Tetrahedron 2014; 70: 1935

      For selected examples see:
    • 89a Iseki K. Nagai T. Kobayashi Y. Tetrahedron Lett. 1994; 35: 3137
    • 89b Caron S. Do NM. Arpin P. Larivée A. Synthesis 2003; 1693
    • 89c Mizuta S. Shibata N. Hibino M. Nagano S. Nakamura S. Toru T. Tetrahedron 2007; 63: 8521
    • 89d Hu X. Wang J. Li W. Lin L. Liu X. Feng X. Tetrahedron Lett. 2009; 50: 4378
    • 89e Zhao H. Qin B. Liu X. Feng X. Tetrahedron 2007; 63: 6822

      For improved procedures using tetramethylammonium fluoride as a source of fluoride ion, see:
    • 90a Mizuta S. Shibata N. Akiti S. Fujimoto H. Nakamura S. Toru T. Org. Lett. 2007; 9: 3707
    • 90b Kawai H. Tachi K. Tokunaga E. Shiro M. Shibata N. Org. Lett. 2010; 12: 5104
    • 90c Kawai H. Mizuta S. Tokunaga E. Shibata N. J. Fluorine Chem. 2013; 152: 46
  • 91 Kawai H. Kusuda A. Mizuta S. Nakamura S. Funahashi Y. Masuda H. Shibata N. J. Fluorine Chem. 2009; 130: 762
  • 92 Szabó GT. Aranyosi K. Csiba M. Tőke L. Synthesis 1987; 565
  • 93 Ooi T. Kato D. Inamura K. Ohmatsu K. Maruoka K. Org. Lett. 2007; 9: 3945
  • 94 Ho C.-Y. Chen Y.-C. Wong M.-K. Yang D. J. Org. Chem. 2005; 70: 898
  • 95 Aggarwal VK. Lopin C. Sandrinelli F. J. Am. Chem. Soc. 2003; 125: 7596

    • For selected examples, see:
    • 96a Chen M. Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 12172
    • 96b Kennedy CR. Guidera JA. Jacobsen JN. ACS Cent. Sci. 2016; 2: 416
    • 96c Izquierdo J. Orue A. Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
    • 96d Lacour J. Monchaud D. Marsol C. Tetrahedron Lett. 2002; 43: 8257
  • 97 Simon RJ. Kania RS. Zuckermann RN. Huebner VD. Jewell DA. Banville S. Ng S. Wang L. Rosenberg S. Marlowe CK. Spellmeyer DC. Tan R. Frankel AD. Santi DV. Cohen FE. Bartlett PA. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 9367

    • For reviews, see:
    • 98a Gangloff N. Ulbricht J. Lorson T. Schlaad H. Luxenhofer R. Chem. Rev. 2016; 116: 1753
    • 98b Seo J. Lee B.-C. Zuckermann RN. In Comprehensive Biomaterials. Ducheyne P. Healy KE. Hutmacher DW. Grainger DW. Kirkpatrick CJ. Elsevier; Amsterdam: 2011. 1st ed., Vol. 2 53
    • 98c Fowler SA. Blackwell HE. Org. Biomol. Chem. 2009; 7: 1508
    • 98d Culf AS. Ouellette RJ. Molecules 2010; 15: 5282

      For reviews, see:
    • 99a Webster AM. Cobb SL. Chem.–Eur. J. 2018; 24: 7560
    • 99b Yoo B. Shin SB. Y. Huang ML. Kirshenbaum K. Chem.–Eur. J. 2010; 16: 5528
  • 100 Shin SB. Y. Yoo B. Todaro LJ. Kirshenbaum K. J. Am. Chem. Soc. 2007; 129: 3218
    • 101a Huang ML. Shin SB. Y. Benson MA. Torres VJ. Kirshenbaum K. ChemMedChem 2012; 7: 114
    • 101b Comegna D. Benincasa M. Gennaro R. Izzo I. De Riccardis F. Bioorg. Med. Chem. 2010; 18: 2010
    • 102a Howard E. Cousido-Siah A. Lepage ML. Schneider JP. Bodlenner A. Mitschler A. Meli A. Izzo I. Alvarez HA. Podjarny A. Compain P. Angew. Chem. Int. Ed. 2018; 57: 8002
    • 102b Lepage ML. Schneider JP. Bodlenner A. Meli A. De Riccardis F. Schmitt M. Tarnus C. Nguyen-Huynh N.-T. Francois Y.-N. Leize-Wagner E. Birck C. Cousido-Siah A. Podjarny A. Izzo I. Compain P. Chem.–Eur. J. 2016; 22: 1
    • 102c Lepage ML. Meli A. Bodlenner A. Tarnus C. De Riccardis F. Izzo I. Compain P. Beilstein J. Org. Chem. 2014; 10: 1406
    • 103a De Cola C. Licen S. Comegna D. Cafaro E. Bifulco G. Izzo I. Tecilla P. De Riccardis F. Org. Biomol. Chem. 2009; 7: 2851
    • 103b D’Amato A. Volpe R. Vaccaro MC. Terracciano S. Bruno I. Tosolini M. Tedesco C. Pierri G. Tecilla P. Costabile C. DellaSala G. Izzo I. De Riccardis F. J. Org. Chem. 2017; 82: 8848
    • 104a Maulucci N. Izzo I. Bifulco G. Aliberti A. De Cola C. Comegna D. Gaeta C. Napolitano A. Pizza C. Tedesco C. Flot D. De Riccardis F. Chem. Commun. 2008; 3927
    • 104b Izzo I. Ianniello G. De Cola C. Nardone B. Erra L. Vaughan G. Tedesco C. De Riccardis F. Org. Lett. 2013; 15: 598
    • 104c De Cola C. Fiorillo G. Meli A. Aime S. Gianolio E. Izzo I. De Riccardis F. Org. Biomol. Chem. 2014; 12: 424
    • 104d D’Amato A. Della Sala G. Izzo I. Costabile C. Masuda Y. De Riccardis F. Molecules 2018; 23: 1779
  • 105 Della Sala G. Nardone B. De Riccardis F. Izzo I. Org. Biomol. Chem. 2013; 11: 726
    • 106a D’Amato A. Pierri G. Costabile C. Della Sala G. Tedesco C. Izzo I. De Riccardis F. Org. Lett. 2018; 20: 640
    • 106b D’Amato A. Schettini R. Della Sala G. Costabile C. Tedesco C. Izzo I. De Riccardis F. Org. Biomol. Chem. 2017; 15: 9932
  • 107 Schettini R. Costabile C. Della Sala G. Buirey J. Tosolini M. Tecilla P. Vaccaro MC. Bruno I. De Riccardis F. Izzo I. Org. Biomol. Chem. 2018; 16: 6708
  • 108 Schettini R. Nardone B. De Riccardis F. Della Sala G. Izzo I. Eur. J. Org. Chem. 2014; 7793
  • 109 Schettini R. De Riccardis F. Della Sala G. Izzo I. J. Org. Chem. 2016; 81: 2494
  • 110 Respondek T. Cueny E. Kodanko J. Org. Lett. 2012; 14: 150
  • 111 Schettini R. D’Amato A. De Riccardis F. Della Sala G. Izzo I. Synthesis 2017; 49: 1319
    • 112a Jew S.-s. Lee Y.-J. Lee J. Kang MJ. Jeong B.-S. Lee J.-H. Yoo M.-S. Kim M.-J. Choi S.-h. Ku J.-M. Park H.-g. Angew. Chem. Int. Ed. 2004; 43: 2382
    • 112b Nakayama K. Maruoka K. Tetrahedron Lett. 2008; 49: 5461
    • 112c Lee Y.-J. Lee J. Kim M.-J. Kim T.-S. Park H.-g. Jew S.-s. Org. Lett. 2005; 7: 1557
  • 113 Boyle GA. Govender T. Kruger HG. Maguire GE. M. Tetrahedron: Asymmetry 2004; 15: 3775
    • 114a Calixarenes and Beyond. Neri P. Sessler PJ. L. Wang M.-X. Springer; Dordrecht: 2016
    • 114b Gutsche CD. Calixarenes, an Introduction. Royal Society of Chemistry; Cambridge: 2008
    • 114c Calixarenes 2001. Asfari Z. Böhmer V. Harrowfield J. Vicens J. Kluwer; Dordrecht: 2001
    • 114d Calixarenes in the Nanoworld. Vicens J. Harrowfield J. Springer; Dordrecht: 2007
    • 115a Taniguchi H. Nomura E. Chem. Lett. 1988; 17: 1773
    • 115b Nomura E. Taniguchi H. Kawaguchi K. Otsuji Y. Chem. Lett. 1991; 20: 2167
    • 115c Taniguchi H. Kawaguchi K. Otsuji Y. J. Org. Chem. 1993; 58: 4709
    • 115d Araki K. Yanagi A. Shinkai S. Tetrahedron 1993; 49: 6763
    • 115e Yang F. Wang Y. Guo H. Xie J. Liu Z. Can. J. Chem. 2010; 88: 622
    • 116a Bozkurt S. Durmaz M. Yilmaz M. Sirit A. Tetrahedron: Asymmetry 2008; 19: 618
    • 116b Shimizu S. Shirakawa S. Eur. J. Org. Chem. 2009; 1916
    • 116c Shirakawa S. Shimizu S. New J. Chem. 2010; 34: 1217
    • 116d Su W. Jin C. Huang L. J. Chem. Res. 2012; 36: 532
  • 117 De Simone NA. Schettini R. Talotta C. Gaeta C. Izzo I. Della Sala G. Neri P. Eur. J. Org. Chem. 2017; 5649