Synthesis 2018; 50(23): 4569-4576
DOI: 10.1055/s-0037-1610305
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Total Synthesis of Clavaminols

Tian Jin*
a  Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. of China   Email: [email protected]   Email: [email protected]
,
Lu Zhao*
b  Sichuan Institute for Food and Drug Control, Chengdu 611731, P. R. of China   Email: [email protected]
,
Xiao Liu
a  Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. of China   Email: [email protected]   Email: [email protected]
,
Liang Sun
c  Department of Pharmacy, Jilin Province People’s Hospital, Changchun 130021, P. R. of China
,
Jia-Fu Lin
a  Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. of China   Email: [email protected]   Email: [email protected]
,
Zhe-Bin Zheng*
a  Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. of China   Email: [email protected]   Email: [email protected]
› Author Affiliations
We thank the Opening Project of the Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department (10Y201712), the Opening Project of the Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province (ARRLKF16-11), the Education Department Project of Sichuan Province (17ZB0115), the Youth Foundation of Chengdu University (2016XJZ21) and Chengdu University New Faculty Start-up Funding (2081916024) for financial support.
Further Information

Publication History

Received: 12 June 2018

Accepted after revision: 17 September 2018

Publication Date:
18 October 2018 (online)


Abstract

Clavaminols are a new class of long-chain 2-amino-3-­alkanols that mostly contain 2R,3S-configurations. Owing to their interesting molecular architectures and promising activities, they have ­become popular targets for synthetic organic chemists. In this review, we highlight 12 total syntheses of clavaminols from different research groups during the period 2009 to 2018.

1 Introduction

2 Synthetic Approaches toward Clavaminols

2.1 Total Synthesis by Chemla and Colleagues (2009)

2.2 Total Synthesis by Greck and Colleagues (2010)

2.3 Total Synthesis by Sutherland and Zaed (2011)

2.4 Total Synthesis by Huang and Colleagues (2011)

2.5 Total Synthesis by Kotora and Colleagues (2012)

2.6 Total Synthesis by Kumar and Colleagues (2013)

2.7 Total Synthesis by Prabhavathi Devi and Colleagues (2013 and 2016)

2.8 Total Synthesis by Sarabia and Colleagues (2014)

2.9 Total Synthesis by Mohapatra and Colleagues (2016)

2.10 Total Synthesis by Lu and Colleagues (2016)

2.11 Total Synthesis by Jin and Colleagues (2017)

2.12 Total Synthesis by Kumar Pandey and Colleagues (2018)

3 Conclusion

 
  • References

  • 1 Aiello A. Fattorusso E. Giordano A. Menna M. Navarrete C. Munoz E. Bioorg. Med. Chem. 2007; 15: 2920
  • 2 Aiello A. Fattorusso E. Giordano A. Menna M. Navarrete C. Munoz E. Tetrahedron 2009; 65: 4384
  • 3 Zaed AM. Sutherland A. Org. Biomol. Chem. 2011; 9: 8030
  • 4 Seguin C. Ferreira F. Botuha C. Chemla F. Perez-Luna A. J. Org. Chem. 2009; 74: 6986
  • 5 Ferreira F. Botuha C. Chemla F. Pérez-Luna A. J. Org. Chem. 2009; 74: 2238
  • 6 Paterson I. Delgado O. Florence GJ. Lyothier I. O’Brien M. Scott JP. Sereinig N. J. Org. Chem. 2005; 70: 150
  • 7 Ait-Youcef R. Moreau X. Greck C. J. Org. Chem. 2010; 75: 5312
  • 8 Ratovelomanana-Vidal V. Girard C. Touati R. Tranchier JP. Ben Hassine B. Genêt JP. Adv. Synth. Catal. 2003; 345: 261
  • 9 Ait-Youcef R. Sbargoud K. Moreau X. Greck C. Synlett 2009; 3007
  • 10 Ireland RE. Norbeck DW. J. Org. Chem. 1985; 50: 2198
  • 11 Blanchette MA. Choy W. Davis JT. Essenfeld AP. Masamune S. Roush WR. Sakai T. Tetrahedron Lett. 1984; 25: 2183
  • 12 Anderson CE. Overman LE. Watson MP. Org. Synth. 2005; 82: 134
  • 13 Fanning KN. Jamieson AG. Sutherland A. Org. Biomol. Chem. 2005; 3: 3749
  • 14 Zaed AM. Sutherland A. Org. Biomol. Chem. 2010; 8: 4394
  • 15 Watanabe M. Harada N. J. Org. Chem. 1995; 60: 7372
  • 16 Weygand F. Frauendo E. Chem. Ber. 1970; 103: 2437
  • 17 Blatter G. Beau JM. Jacquinet JC. Carbohydr. Res. 1994; 260: 189
  • 18 Chen B.-S. Yang L.-H. Ye J.-L. Huang T. Ruan Y.-P. Fu J. Huang P.-Q. Eur. J. Med. Chem. 2011; 46: 5480
  • 19 Prchalova E. Votruba I. Kotora M. J. Fluorine Chem. 2012; 141: 49
  • 20 Bargiggia FC. Murray WV. J. Org. Chem. 2005; 70: 9636
  • 21 Michaut A. Boddaert T. Coquerel Y. Rodriguez J. Synthesis 2007; 2867
  • 22 Pandey M. Chowdhury PS. Dutta AK. Kumar P. Pal S. RSC Adv. 2013; 3: 15442
  • 23 Connon SJ. Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
  • 24 Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
  • 25 Gessler S. Randl S. Blechert S. Tetrahedron Lett. 2000; 41: 9973
  • 26 Kisfaludy L. Mohacsi T. Low M. Drexler F. J. Org. Chem. 1979; 44: 654
  • 27 Vijai Kumar Reddy T. Prabhavathi Devi BL. A. Prasad RB. N. Sujitha P. Ganesh Kumar C. Eur. J. Med. Chem. 2013; 67: 384
  • 28 Lu SF. Oyang QQ. Guo ZW. Yu B. Hui YZ. Angew. Chem. Int. Ed. 1997; 36: 2344
  • 29 Cravotto G. Gaudino EC. Barge A. Binello A. Albertino A. Aghemo C. Nat. Prod. Res. 2010; 24: 428
  • 30 Sabitha G. Babu RS. Rajkumar M. Yadav JS. Org. Lett. 2002; 4: 343
  • 31 Vijai Kumar Reddy T. Jyotsna A. Prabhavathi Devi BL. A. Prasad RB. N. Poornachandra Y. Ganesh Kumar C. Eur. J. Med. Chem. 2016; 120: 86
  • 32 Das B. Nagendra S. Reddy CR. Tetrahedron: Asymmetry 2011; 22: 1249
  • 33 Katsuki T. Sharpless KB. J. Am. Chem. Soc. 1980; 102: 5974
  • 34 Sasaki M. Tanino K. Hirai A. Miyashita M. Org. Lett. 2003; 5: 1789
  • 35 Sarabia F. Vivar-Garcia C. Garcia-Ruiz C. Sanchez-Ruiz A. Soledad Pino-Gonzalez M. Garcia-Castro M. Chammaa S. Eur. J. Org. Chem. 2014; 3847
  • 36 Sarabia F. Chammaa S. García-Castro M. Martín-Gálvez F. Chem. Commun. 2009; 5763
  • 37 Thirupathi B. Bharath Y. Mohapatra DK. ARKIVOC 2016; (ii): :162
  • 38 Datta A. Kumar JS. R. Roy S. Tetrahedron 2001; 57: 1169
  • 39 Dess DB. Martin JC. J. Org. Chem. 1983; 48: 4155
  • 40 Dess DB. Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
  • 41 Mina JG. Mosely JA. Ali HZ. Denny PW. Steel PG. Org. Biomol. Chem. 2011; 9: 1823
  • 42 Bertelsen S. Dinér P. Johansen RL. Jørgensen KA. J. Am. Chem. Soc. 2007; 129: 1536
  • 43 Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
  • 44 Weng J. Huang L.-J. Long L. Xu L.-Y. Lu G. Tetrahedron Lett. 2016; 57: 2554
  • 45 Jin T. Zhao L. Huang M. Yue Y. Zheng Z.-B. Ham W.-H. Tetrahedron: Asymmetry 2017; 28: 725
  • 46 Hoffman RV. Maslouh N. Cervantes-Lee F. J. Org. Chem. 2002; 67: 1045
  • 47 Vabeno J. Brisander M. Lejon T. Luthman K. J. Org. Chem. 2002; 67: 9186
  • 48 So RC. Ndonye R. Izmirian DP. Richardson SK. Guerrera RL. Howell AR. J. Org. Chem. 2004; 69: 3233
  • 49 Suyama TL. Gerwick WH. Org. Lett. 2006; 8: 4541
  • 50 Jin T. Mu Y. Kim G.-W. Kim S.-S. Kim J.-S. Huh S.-I. Lee K.-Y. Joo J.-E. Ham W.-H. Asian J. Org. Chem. 2012; 1: 232
  • 51 Jin T. Kim J.-S. Mu Y. Park S.-H. Jin X. Kang J.-C. Oh C.-Y. Ham W.-H. Tetrahedron 2014; 70: 2570
  • 52 Palacios DS. Anderson TM. Burke MD. J. Am. Chem. Soc. 2007; 129: 13804
  • 53 Pandey R. Gehlawat A. Prakash R. Kumar Pandey S. Synth. Commun. 2018; 48: 2280
  • 54 Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev. 1994; 94: 2483
  • 55 Sharpless KB. Amberg W. Bennani YL. Crispino GA. Hartung J. Jeong KS. Kwong HL. Morikawa K. Wang ZM. J. Org. Chem. 1992; 57: 2768