Synthesis 2018; 50(23): 4501-4524
DOI: 10.1055/s-0037-1610284
review
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Azomethine Imine–Alkyne Cycloadditions (CuAIAC)

Uroš Grošelj
,
Franc Požgan
,
Bogdan Štefane
,
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia   Email: jurij.svete@fkkt.uni-lj.si
› Author Affiliations
Slovenian Research Agency (ARRS), research core funding No. P1-0179.
Further Information

Publication History

Received: 18 August 2018

Accepted after revision: 23 August 2018

Publication Date:
05 October 2018 (online)


Dedicated to Professor Emeritus Branko Stanovnik, University of Ljubljana, on the occasion of his 80th birthday

Abstract

Although the first example of copper-catalyzed azomethine imine–alkyne cycloaddition (CuAIAC) was published only a year after the seminal papers of Meldal and Sharpless on Cu-catalyzed azide–alkyne cycloaddition (CuAAC), the CuAIAC reaction has remained overlooked by the synthetic community for almost a decade. Since 2010, however, CuAIAC reaction started to emerge as a promising supplement to the well-known CuAAC reaction. The present review surveys primarily the literature on CuAIAC reaction since 2003. Beside this, azomethine imine–alkyne cycloadditions catalyzed by other metals, selected examples of metal-free reactions, and related [3+3] and [3+4] cycloadditions of azomethine imines are presented. All these experimental data indicate the viability of CuAIAC in organic synthesis and the applicability in ‘click’ chemistry.

1 Introduction

2 Reactions with Acyclic Azomethine Imines

3 Reactions with C,N-Cyclic Azomethine Imines

4 Reactions with N,N-Cyclic Azomethine Imines

5 Reactions with C,N,N-Cyclic Azomethine Imines

6 The Mechanism of the CuAIAC Reaction

7 Conclusions and Outlook

 
  • References

    • 1a 1,3-Dipolar Cycloaddition Chemistry . Vol. 1. Padwa A. John Wiley & Sons; New York: 1984
    • 1b 1,3-Dipolar Cycloaddition Chemistry . Vol. 2. Padwa A. John Wiley & Sons; New York: 1984
    • 1c Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. In Chemistry of Heterocyclic Compounds. Vol. 59. Padwa A. Pearson WH. Wiley; Hoboken: 2003
    • 2a Huisgen R. 1,3-Dipolar Cycloadditions – Introduction, Survey, Mechanism. In 1,3-Dipolar Cycloaddition Chemistry. Vol. 1. Padwa A. John Wiley & Sons; New York: 1984: 1-176
    • 2b Houk KN. Yamaguchi K. Theory of 1,3-Dipolar Cycloadditions . In 1,3-Dipolar Cycloaddition Chemistry . Vol. 2. Padwa A. John Wiley & Sons; New York: 1984: 407-447
    • 2c Ess DH. Houk KN. J. Am. Chem. Soc. 2008; 130: 10187
    • 3a Gothelf KV. Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 3b Gothelf VK. Jørgensen KA. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. In Chemistry of Heterocyclic Compounds. Vol. 59. Padwa A. Pearson WH. Wiley; Hoboken: 2003: 817-899
    • 3c Pellissier H. Tetrahedron 2012; 68: 2197
    • 3d Hashimoto T. Maruoka K. Chem. Rev. 2015; 115: 5366
  • 4 Earl JC. Mackney AW. J. Chem. Soc. 1935; 899
    • 5a Huisgen R. Gotthardt H. Grashey R. Chem. Ber. 1968; 101: 536
    • 5b Gotthardt H. Huisgen R. Chem. Ber. 1968; 101: 552
    • 5c Huisgen R. Grashey R. Gotthardt H. Chem. Ber. 1968; 101: 829
    • 5d Huisgen R. Gotthardt H. Chem. Ber. 1968; 101: 839
    • 6a Huisgen R. Fleischmann R. Eckell A. Tetrahedron Lett. 1960; 1: 1
    • 6b Huisgen R. Eckell A. Tetrahedron Lett. 1960; 1: 5
    • 6c Huisgen R. Grashey R. Laur P. Leitermann H. Angew. Chem. 1960; 72: 416

      For early reviews until 2003, see:
    • 7a Grashey R. Azomethine Imines . In 1,3-Dipolar Cycloaddition Chemistry . Vol. 1. Padwa A. John Wiley & Sons; New York: 1984: 733-814
    • 7b Schantl JG. Azomethine Imines . In Science of Synthesis . Vol. 27. Padwa A. Thieme; Stuttgart: 2004: 731-824
  • 8 For a recent review, see: Nájera C. Sansano JM. Yus M. Org. Biomol. Chem. 2015; 13: 8596

    • For recent reviews on specialized topics, see:
    • 9a Belskaya NP. Bukulev VA. Fan Z. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 2016; 52: 627
    • 9b Decuypère E. Plougastel L. Audisio D. Taran F. Chem. Commun. 2017; 53: 11515
    • 9c Požgan F. Al Mamari H. Grošelj U. Svete J. Štefane B. Molecules 2018; 23: 3
    • 9d Grošelj U. Svete J. Al Mamari HH. Požgan F. Štefane B. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 2018; 54: 214
    • 9e Browne DL. Harrity JP. A. Tetrahedron 2010; 66: 553
  • 10 Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 11a Tornøe CW. Christensen C. Meldal M. J. Org. Chem. 2002; 67: 3057
    • 11b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 12a Meldal M. Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 12b Fokin VV. Matyjaszewski K. CuAAC: The Quintessential Click Reaction . In Organic Chemistry – Breakthroughs and Perspectives . Ding K. Dai L.-X. Wiley-VCH; Weinheim: 2012. 1st ed. 247-277
    • 12c Berg R. Straub BF. Beilstein J. Org. Chem. 2013; 9: 2715
    • 12d Haldón E. Nicasio MC. Pérez PJ. Org. Biomol. Chem. 2015; 13: 9528
    • 12e Literature examples were obtained by SciFinder® reaction search with the following search parameters/limiters: substructures of more complex structures, 1 step, catalyzed, regioselective, stereoselective.
    • 13a Quinton J. Kolodych S. Chaumonet M. Bevilacqua V. Nevers M.-C. Volland H. Gabillet S. Thuéry P. Créminin C. Taran F. Angew. Chem. Int. Ed. 2012; 51: 6144
    • 13b Vicennati P. Bensel N. Wagner A. Créminon C. Taran F. Angew. Chem. Int. Ed. 2005; 44: 6863
  • 14 Shintani R. Fu GC. J. Am. Chem. Soc. 2003; 125: 10778
  • 15 Hashimoto T. Takiguchi Y. Maruoka K. J. Am. Chem. Soc. 2013; 135: 11473
  • 16 Ma C. Li Y. Wen P. Yan R. Ren Z. Huang G. Synlett 2011; 1321
  • 17 Safaei S. Mohammadpoor-Baltork I. Khosropour AR. Moghadam M. Tangestaninejad S. Mirkhani V. New J. Chem. 2013; 37: 2037
  • 18 Hashimoto T. Omote M. Maruoka K. Angew. Chem. Int. Ed. 2011; 50: 8952
  • 19 Li S. Luo Y. Wu J. Org. Lett. 2011; 13: 4312
  • 20 Huang P. Yang Q. Chen Z. Ding Q. Xu J. Peng Y. J. Org. Chem. 2012; 77: 8092
  • 21 Suárez A. Downey CW. Fu GC. J. Am. Chem. Soc. 2005; 127: 11244
  • 22 Arai T. Ogino Y. Molecules 2012; 17: 6170
  • 23 Arai T. Ogino Y. Sato T. Chem. Commun. 2013; 49: 7776
  • 24 Imaizumi T. Yamashita Y. Kobayashi S. J. Am. Chem. Soc. 2012; 134: 20049
    • 25a Pušavec E. Mirnik J. Šenica L. Grošelj U. Stanovnik B. Svete J. Z. Naturforsch., B: J. Chem. Sci. 2014; 69: 615
    • 25b Pušavec Kirar E. Grošelj U. Golobič A. Požgan F. Pusch S. Weber C. Andernach L. Štefane B. Opatz T. Svete J. J. Org. Chem. 2016; 81: 11802
    • 26a Hori M. Sakakura A. Ishihara K. J. Am. Chem. Soc. 2014; 136: 13198
    • 26b Hori M. Sakakura A. Ishihara K. J. Am. Chem. Soc. 2014; 136: 15438
  • 27 Pušavec Kirar E. Grošelj U. Golobič A. Požgan F. Ričko S. Štefane B. Svete J. Z. Naturforsch., B: J. Chem. Sci. 2018; 73: 467
  • 28 Pezdirc L. Stanovnik B. Svete J. Aust. J. Chem. 2009; 62: 1661
  • 29 Shao C. Zhang Q. Cheng G. Cheng C. Wang X. Hu Y. Eur. J. Org. Chem. 2013; 6443
  • 30 Oishi T. Yoshimura K. Yamaguchi K. Mizuno N. Chem. Lett. 2010; 39: 1086
  • 31 Zhang M. Wu F. Wang F. Wu J. Chen W. Adv. Synth. Catal. 2017; 359: 2768
  • 32 Tomažin U. Grošelj U. Počkaj M. Požgan F. Štefane B. Svete J. ACS Comb. Sci. 2017; 19: 386
  • 33 Keller M. Sido AS. S. Pale P. Sommer J. Chem. Eur. J. 2009; 15: 2810
  • 34 Chassaing S. Alix A. Boningari T. Sido KS. S. Keller M. Kuhn P. Louis B. Sommer J. Pale P. Synthesis 2010; 1557
  • 35 Yoshimura K. Oshi T. Yamaguchi K. Mizuno N. Chem. Eur. J. 2011; 17: 3827
  • 36 Koler A. Paljevac M. Cmager N. Iskra J. Kolar M. Krajnc P. Polymer 2017; 126: 402
  • 37 Chen X. Jia C. Cao L. Zhang D. Shuixiang L. Zhang Q. Chem. Res. Chin. Univ. 2015; 31: 543
  • 38 Pušavec Kirar E. Grošelj U. Mirri G. Požgan F. Strle G. Štefane B. Jovanovski V. Svete J. J. Org. Chem. 2016; 81: 5997
  • 39 Mirnik J. Pušavec Kirar E. Ričko S. Grošelj U. Golobič A. Požgan F. Štefane B. Svete J. Tetrahedron 2017; 73: 3329
  • 40 Kolodych S. Rasolofonjatovo E. Chaumontet M. Nevers M.-C. Créminon C. Taran F. Angew. Chem. Int. Ed. 2013; 52: 12056
  • 41 Specklin S. Decuypere E. Plougastel L. Aliani S. Taran F. J. Org. Chem. 2014; 79: 7772
  • 42 Decuypère E. Specklin S. Gabillet S. Audisio D. Liu H. Plougastel L. Kolodych S. Taran F. Org. Lett. 2015; 17: 362
  • 43 Liu H. Audisio D. Plougastel E. Buisson C.-A. Koniev O. Kolodych S. Wagner A. Elhabiri M. Ktzyczmonik A. Forsback S. Solin O. Gouverneur V. Taran F. Angew. Chem. Int. Ed. 2016; 55: 12073
  • 44 Wezeman T. Comas-Barceló J. Nieger M. Harrity JP. A. Bräse S. Org. Biomol. Chem. 2017; 15: 1575
  • 45 Pušavec Kirar E. Drev M. Mirnik J. Grošelj U. Golobič A. Dahmann G. Požgan F. Štefane B. Svete J. J. Org. Chem. 2016; 81: 8920
  • 46 Comas-Barceló J. Foster RS. Fiser B. Gomez-Bengoa E. Harrity JP. A. Chem. Eur. J. 2015; 21: 3257
  • 47 Comas-Barceló J. Blanco-Ania D. Van den Broek SA. M. W. Nieuwland PJ. Harrity JP. A. Rujtes PJ. T. Catal. Sci. Technol. 2016; 6: 4718
    • 48a Dorofeeva OV. Ryzhova ON. Suntsova MA. J. Phys. Chem. A 2013; 117: 6835
    • 48b Klapötke TM. Krumm B. Azide-Containing High Energy Materials . In Organic Azides: Syntheses and Applications . Bräse S. Banert K. Wiley; New York: 2010: 391-411
    • 48c Bräse S. Gil C. Knepper K. Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 49a Inturi SB. Kalita B. Ahamed AJ. Org. Biomol. Chem. 2016; 14: 11061
    • 49b Washizuka K.-I. Nagai K. Minakata S. Ryu I. Komatsu M. Tetrahedron Lett. 1999; 40: 8849
    • 49c Saxena MK. Gudi MN. George MV. Tetrahedron 1973; 29: 101
    • 50a Gao Z.-H. Chen X.-Y. Cheng J.-T. Liao W.-L. Ye S. Chem. Commun. 2015; 51: 9328
    • 50b Hesping L. Biswas A. Daniliuc CG. Mück-Lichtenfeld C. Studer A. Chem. Sci. 2015; 6: 1252
    • 50c Li F. Chen J. Hou Y. Li Y. Wu X.-Y. Tong X. Org. Lett. 2015; 17: 5376
    • 50d Li B.-S. Wang Y. Jin Z. Chi YR. Chem. Sci. 2015; 6: 6008
    • 50e Kawai H. Yuan Z. Tokunaga E. Shibata N. Org. Lett. 2012; 14: 5330
    • 50f Jing C. Na R. Wang B. Liu H. Zhang L. Liu J. Wang M. Zhong J. Kwon O. Guo H. Adv. Synth. Catal. 2012; 354: 1023
    • 51a Shen S. Yang Y. Duan J. Jia Z. Liang J. Org. Biomol. Chem. 2018; 16: 1068
    • 51b Mondal M. Wheeler KA. Kerrigan NJ. Org. Lett. 2016; 18: 4108
    • 51c Winterton SE. Ready JM. Org. Lett. 2016; 18: 2608
    • 51d Vishwanath M. Sivamuthuraman K. Kesevan V. Chem. Commun. 2016; 52: 12314
    • 51e Pleshchev MI. Das Gupta NV. Struchkova MI. Goloveshkin AS. Bushmarinov IS. Khakimov DV. Makhova NN. Mendeleev Commun. 2015; 25: 188
    • 51f Na R. Jing C. Xu Q. Jiang H. Wu X. Shi J. Zhong J. Wang M. Benitez D. Tkatchouk E. Goddard III WA. Guo H. Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
    • 51g Luo N. Zheng Z. Yu Z. Org. Lett. 2011; 13: 3384
    • 51h Shi F. Mancuso R. Larock RC. Tetrahedron Lett. 2009; 50: 4067
    • 52a Brown AW. Comas-Barceló J. Harrity JP. A. Chem. Eur. J. 2017; 23: 5228
    • 52b Dürüst Y. Sağılı A. Kariuki BM. Knight DW. Tetrahedron 2014; 70: 6012
    • 52c Foster RS. Adams H. Jakobi H. Harrity JP. A. J. Org. Chem. 2013; 78: 4049
    • 52d Browne DL. Vivat JF. Plant A. Gomez-Bengoa E. Harrity JP. A. J. Am. Chem. Soc. 2009; 131: 7762
  • 53 Kasapidou PM. Zarganes-Tzitzikas T. Tsoleridis CA. Stephanidou-Stephanatou J. Neochoritis CG. Synthesis 2017; 49: 3619
  • 54 Yu L. Zhong Y. Yu J. Gan L. Cai Z. Wang R. Jiang X. Chem. Commun. 2018; 54: 2353
  • 55 Huang P. Chen Z. Yang Q. Peng Y. Org. Lett. 2012; 14: 2790
  • 56 Zhang L. Xiao Q. Ye S. Wu J. Chem. Asian. J. 2012; 7: 1909
  • 57 Lui H. Wang Z. Pu S. Lui G. Synthesis 2014; 46: 600
  • 58 Zhou W. Li X.-X. Li G.-H. Wu Y. Chen Z. Chem. Commun. 2013; 49: 3552
  • 59 Du J. Xu X. Li Y. Pan L. Liu Q. Org. Lett. 2014; 16: 4004
  • 60 Cheng X. Cao X. Xuan J. Xiao W.-J. Org. Lett. 2018; 20: 52
  • 61 Zhu C.-Z. Feng J.-J. Zhang J. Chem. Commun. 2017; 53: 4688
  • 62 Zhou YY. Li J. Ling L. Liao S.-H. Sun X.-L. Li Y.-X. Wang L.-J. Tang Y. Angew. Chem. Int. Ed. 2013; 52: 1452
  • 63 Li Z. Yu H. Feng Y. Hou Z. Zhang L. Yang W. Wu Y. Xiao Y. Guo H. RSC Adv. 2015; 5: 34481
  • 65 Hu X.-Q. Chen J.-R. Gao S. Feng B. Lu L.-Q. Xiao W.-J. Chem. Commun. 2013; 49: 7905
  • 66 Guo H. Liu H. Zhu F.-L. Na R. Jiang H. Wu Y. Zhang L. Li Z. Yu H. Wang B. Xiao Y. Hu X.-P. Wang M. Angew. Chem. Int. Ed. 2013; 52: 12641
  • 67 Smirnov AS. Kritchenkov AS. Bokach NA. Kuznetsov ML. Selivanov SI. Gurzhiy VV. Roodt A. Kukushkin VYu. Inorg. Chem. 2015; 54: 11018
  • 68 Gong J. Wan Q. Kang Q. Org. Lett. 2018; 20: 3354
  • 69 Shapiro ND. Shi Y. Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
  • 70 Du Q. Neudörfel J.-M. Schmalz H.-G. Chem. Eur. J. 2018; 24: 2379
  • 71 Shintani R. Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
    • 72a Quian Y. Zavalij PJ. Hu W. Doyle MP. Org. Lett. 2013; 15: 1564
    • 72b Zhang Y. Yang Y. Zhao J. Xue Y. Eur. J. Org. Chem. 2018; 3086
  • 73 Li S.-n. Yu B. Liu J. Li H.-l. Na R. Synlett 2016; 27: 282
  • 74 Efremova MM. Kostikov RR. Stepakov AV. Panikorovsky TL. Shcherbakova VS. Ivanov AV. Molchanov AP. Tetrahedron 2017; 73: 671
  • 75 Fang X. Li J. Tao H.-Y. Wang C.-J. Org. Lett. 2013; 15: 5554
  • 76 Chan A. Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
  • 77 Jin Q. Zhang J. Jiang C. Zhang D. Gao M. Hu S. Jin Q. Zhang J. Jiang C. Zhang D. Gao M. Hu S. J. Org. Chem. 2018; 83: 8410
  • 78 Mei G.-J. Zhu Z.-Q. Zhao J.-J. Bian C.-Y. Chen J. Chen R.-W. Shi F. Chem. Commun. 2017; 53: 2768
  • 79 Wang M. Huang Z. Xu J. Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
  • 80 Shintani R. Murakami M. Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356
  • 81 Li L. Wang H. Yang X. Kong L. Wang F. Li X. J. Org. Chem. 2016; 81: 12038
    • 82a Gotthardt H. Huisgen R. Knorr R. Chem. Ber. 1968; 101: 1056
    • 82b Kato H. Nakazawa S. Kiyosawa T. Hirakawa K. J. Chem. Soc., Perkin Trans. 1 1976; 672
    • 83a Wu C. Fang Y. Larock RC. Shi F. Org. Lett. 2010; 12: 2234
    • 83b Fang Y. Wu C. Larock RC. Shi F. J. Org. Chem. 2011; 76: 8840
    • 84a Shah TK. Medina JM. Garg NK. J. Am. Chem. Soc. 2016; 138: 4948
    • 84b Shi J. Xu H. Qiu D. He J. Li Y. J. Am. Chem. Soc. 2017; 139: 623
    • 84c Ikawa T. Masuda S. Nakajima H. Akai S. J. Org. Chem. 2017; 82: 4242
    • 84d Ikawa T. Masuda S. Takagi A. Akai S. Chem. Sci. 2016; 7: 5206
    • 85a Medina JM. McMahon TC. Jiménez-Osés G. Houk KN. Garg NK. J. Am. Chem. Soc. 2014; 136: 14706
    • 85b McMahon TC. Medina JM. Yang Y.-F. Simmons BJ. Houk KN. Garg NK. J. Am. Chem. Soc. 2015; 137: 4082
  • 86 Agard NJ. Prescher JA. Bertozzi CR. J. Am. Chem. Soc. 2004; 126: 15046
  • 87 Wallace S. Chin JW. Chem. Sci. 2014; 5: 1742
    • 88a Lang K. Chin JW. ACS Chem. Biol. 2014; 9: 16
    • 88b Narayanam MK. Liang Y. Houk KN. Murphy JM. Chem. Sci. 2016; 7: 1257
    • 88c Bernard S. Audisio D. Riomed M. Bregant S. Sallustrau A. Plougastel L. Decuypere E. Gabillet S. Kumar RA. Elyian J. Trinh MN. Koniev O. Wagner A. Kolodych S. Taran F. Angew. Chem. Int. Ed. 2017; 56: 15612
    • 88d Liu F. Liang Y. Houk KN. Acc. Chem. Res. 2017; 50: 2297
    • 88e de la Conceptión JG. Ávalos M. Cintas P. Jiménez JL. Chem. Eur. J. 2018; 24: 7507
    • 88f Quing Y. Pulcu GS. Bell NA. W. Bayley H. Angew. Chem. Int. Ed. 2018; 57: 1218
    • 89a Plougastel L. Koniev O. Specklin S. Decuypere E. Créminon C. Buisson D.-A. Wagner A. Kolodych S. Taran F. Chem. Commun. 2014; 50: 9376
    • 89b Tao H. Liu F. Zeng R. Shao Z. Zou L. Cao Y. Murphy JM. Houk KN. Liang Y. Chem. Commun. 2018; 54: 5082
    • 90a Favre C. Friscourt F. Org. Lett. 2018; 20: 4213
    • 90b Favre C. de Cremoux L. Badaut J. Friscourt F. J. Org. Chem. 2018; 83: 2058
    • 90c Zhang L. Zhang X. Yao Z. Jiang S. Deng J. Li B. Yu Z. J. Am. Chem. Soc. 2018; 140: 7390
    • 91a Létinois-Hables U. Pale P. Berger S. J. Org. Chem. 2005; 70: 9185
    • 91b Létinois-Hables U. Pale P. Berger S. Magn. Reson. Chem. 2004; 42: 831
  • 92 According to the experience from the authors’ lab, the N,N-cyclic dipoles obtained from pyrazolidin-3-ones and aromatic aldehydes can be stored for more than two decades in the presence of air and moisture without noticeable hydrolytic decomposition.
  • 93 Also working with common azidation reagents, such as sodium azide, TMSN3, and diphenyl phosphoryl azide can be risky due to potential formation of highly toxic hydrazoic acid.