Synthesis 2018; 50(21): 4216-4228
DOI: 10.1055/s-0037-1610282
short review
© Georg Thieme Verlag Stuttgart · New York

Merging Transition-Metal Catalysis with Phthalimides: A New Entry to Useful Building Blocks

Yu-Chao Yuan
,
Christian Bruneau
,
Univ Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France   Email: rafael.gramage-doria@univ-rennes1.fr
› Author Affiliations
Further Information

Publication History

Received: 20 July 2018

Accepted after revision: 23 August 2018

Publication Date:
17 September 2018 (eFirst)

Abstract

Phthalimides have found their main application in organic synthesis as protecting groups for primary amines during the multistep synthesis of biologically relevant targets. On the other hand, phthalimide functionalization is rather challenging and it is traditionally associated with the use of over-stoichiometric amounts of environmentally hazardous reagents. In this short review, we describe and discuss how, in the last decades, transition-metal catalysts have provided useful organic building blocks after selective transformation of the phthalimide skeleton in a more efficient and sustainable manner.

1 Introduction

2 Partial Carbonyl Reduction

3 Full Carbonyl Reduction

4 Aromatic Ring Reduction

5 Five-Membered-Ring Opening

6 Conclusion

 
  • References

  • 1 New Strategies in Chemical Synthesis and Catalysis. Pignataro B. Wiley-VCH; Weinheim: 2012
  • 2 New Avenues to Efficient Chemical Synthesis. Seeberger PH. Blume T. Springer; Heidelberg: 2007
  • 3 Lippard SJ. Nature (London) 2002; 416: 587
    • 5a Osby JO. Martin MG. Ganem B. Tetrahedron Lett. 1984; 25: 2093
    • 5b Alford JS. Davies HM. L. Org. Lett. 2012; 14: 6020
    • 6a Sharma U. Kumar P. Kumar N. Singh B. Mini-Rev. Med. Chem. 2010; 10: 678
    • 6b Kuo G.-H. Prouty C. Murray WV. Pulito V. Jolliffe L. Cheung P. Varga S. Evangelisto M. Wang J. J. Med. Chem. 2000; 43: 2183
    • 6c Caraballo R. Larsson M. Nilsson SK. Ericsson M. Qian W. Nguyen Tran NP. Kindahl T. Svensson R. Saar V. Artursson P. Olivecrona G. Enquist P.-A. Elofsson M. Eur. J. Med. Chem. 2015; 103: 191
    • 6d Winter GE. Buckley DL. Paulk J. Roberts JM. Souza A. Dhe-Paganon S. Bradner JE. Science (Washington, D. C.) 2015; 348: 1376
    • 7a Wu Y. Zhu W. Chem. Soc. Rev. 2013; 42: 2039
    • 7b Hendsbee AD. Sun J.-P. Law WK. Yan H. Hill IG. Spasyuk DM. Welch GC. Chem. Mater. 2016; 28: 7098
    • 8a Hendsbee AD. McAfee SM. Sun J.-P. McCormick TM. Hill IG. Welch GC. J. Mater. Chem. C 2015; 3: 8904
    • 8b Gautam P. Sharma R. Misra R. Keshtov ML. Kuklin SA. Sharma GD. Chem. Sci. 2017; 8: 2017
  • 9 Pulido A. Chen L. Kaczorowski T. Holden D. Little MA. Chong SY. Slater BJ. McMahon DP. Bonillo B. Stackhouse CJ. Stephenson A. Kane CM. Clowes R. Hasell T. Cooper AI. Day GM. Nature (London) 2017; 543: 657
    • 10a Lee N.-J. Koo J.-C. Ju S.-S. Moon S.-B. Cho W.-J. Jeong I.-C. Lee S.-J. Cho M.-Y. Theodorakis EA. Polym. Int. 2002; 51: 569
    • 10b Postma A. Davis TP. Li G. Moad G. O’Shea MS. Macromolecules 2006; 39: 5307
    • 10c Guo X. Kim FS. Jenekhe SA. Watson MD. J. Am. Chem. Soc. 2009; 131: 7206
    • 10d Xin H. Guo X. Kim FS. Ren G. Watson MD. Jenekhe SA. J. Mater. Chem. 2009; 19: 5303
    • 11a Okada K. Okamoto K. Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 11b Cornella J. Edwards JT. Qin T. Kawamura S. Wang J. Pan C.-M. Gianatassio R. Schmidt M. Eastgate MD. Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 11c Candish L. Teders M. Glorius F. J. Am. Chem. Soc. 2017; 139: 7440
    • 12a Ban S.-R. Xie H.-Y. Zhu X.-X. Li Q.-S. Eur. J. Org. Chem. 2011; 6413
    • 12b Dekamin MG. Eslami M. Maleki A. Tetrahedron 2013; 69: 1074
    • 12c Dekamin MG. Peyman SZ. Monatsh. Chem. 2016; 147: 445

      For selected examples, see:
    • 13a Rice LM. Reid EE. Grogan CH. J. Org. Chem. 1954; 19: 884
    • 13b Schreiber KC. Fernandez VP. J. Org. Chem. 1961; 26: 1744
    • 13c Horii Z.-I. Iwata C. Tamura Y. J. Org. Chem. 1961; 26: 2273
    • 13d Brewster JH. Fusco AM. Carosino LE. Corman BG. J. Org. Chem. 1963; 28: 498
    • 13e Brewster JH. Fusco AM. J. Org. Chem. 1963; 28: 501
    • 13f Kondo Y. Witkop B. J. Org. Chem. 1968; 33: 206
    • 13g Anderson PS. Christy ME. Colton CD. Halczenco W. Ponticelli GS. Shepard KL. J. Org. Chem. 1979; 44: 1519
    • 13h Gawley RE. Chemburkar SR. Smith AL. Anklekar TV. J. Org. Chem. 1988; 53: 5381
    • 13i Carpino LA. Padykula RE. Barr DE. Hall FH. Krause JG. Dufresne RF. Thoman CJ. J. Org. Chem. 1988; 53: 2565
    • 13j Norman MH. Rigdon GC. Navas FIII. Cooper BR. J. Med. Chem. 1994; 37: 2552
    • 13k Nishio T. Yamamoto H. J. Heterocycl. Chem. 1995; 32: 883
    • 13l Pigeon P. Decroix B. Tetrahedron Lett. 1996; 37: 7707
    • 13m Norman MH. Minick DJ. Rigdon GC. J. Med. Chem. 1996; 39: 149
    • 13n Collado MI. Manteca I. Sotomayor N. Villa M.-J. Lete E. J. Org. Chem. 1997; 62: 2080
    • 13o Cacchi S. Fabrizi G. Moro L. Synlett 1998; 741
    • 13p Okamura H. Shimizu H. Nakamura Y. Iwagawa T. Nakatani M. Tetrahedron Lett. 2000; 41: 4147
    • 13q Hudkins RL. Johnson NW. J. Heterocycl. Chem. 2001; 38: 591
    • 13r Feng S. Panetta CA. Graves DE. J. Org. Chem. 2001; 66: 612
    • 13s Yuan X.-H. Zhang M.-J. Kang C.-Q. Guo H.-Q. Qiu X.-P. Gao L.-X. Synth. Commun. 2006; 36: 435
    • 13t Decroix B. Daïch A. Marchalín Š. Sikoraiová J. Tetrahedron Lett. 2002; 43: 4747
    • 13u Decroix B. Daïch A. Hucher N. J. Org. Chem. 2001; 66: 4695
    • 13v Decroix B. Pigeon P. Marchalin S. Daïch A. Tetrahedron Lett. 1998; 39: 9187
    • 13w Decroix B. Pigeon P. Tetrahedron Lett. 1998; 39: 8659
    • 13x Decroix B. Pigeon P. Othman M. Tetrahedron 1998; 54: 8737
    • 13y Decroix B. Pigeon P. Tetrahedron Lett. 1997; 38: 2985
  • 14 Takebayashi S. John JM. Bergens SH. J. Am. Chem. Soc. 2010; 132: 12832
  • 15 McAlees AJ. McCrindle R. J. Chem. Soc. C 1969; 2425
  • 16 Ding G. Lu B. Li Y. Wan J. Zhang Z. Xie X. Adv. Synth. Catal. 2015; 357: 1013
  • 17 Ding G. Li C. Shen Y. Lu B. Zhang Z. Xie X. Adv. Synth. Catal. 2016; 358: 1241
  • 18 Cabrero-Antonino JR. Sorribes I. Junge K. Beller M. Angew. Chem. Int. Ed. 2016; 55: 387
  • 19 Cabrero-Antonino JR. Adam R. Papa V. Holsten M. Junge K. Beller M. Chem. Sci. 2017; 8: 5536

    • For successful examples, see:
    • 20a Wang E.-C. Chen H.-F. Feng P.-K. Lin Y.-L. Hsu M.-K. Tetrahedron Lett. 2002; 43: 9163
    • 20b Bousquet T. Fleury J.-F. Daïch A. Netchitaïlo P. Tetrahedron 2006; 62: 706
    • 20c See also ref. 13l.
  • 21 Dennis JM. Calyore CM. Sjoholm JS. Lutz JP. Gair JJ. Johnson JB. Synlett 2013; 24: 2567
  • 22 Havlik SE. Simmons JM. Winton VJ. Johnson JB. J. Org. Chem. 2011; 76: 3588
  • 23 Adkins H. Cramer HI. J. Am. Chem. Soc. 1930; 52: 4349
  • 24 Hennige H. Kreber RP. Konrad M. Jelitto F. Chem. Ber. 1988; 121: 243
  • 25 Arevalo A. Ovando-Segovia S. Flores-Alamo M. Garcia JJ. Organometallics 2013; 32: 2939
  • 26 Milewska MJ. Bytner T. Połoński T. Synthesis 1996; 1485
  • 27 McAlees AJ. McCrindle R. Sneddon DW. J. Chem. Soc., Perkin Trans. 1 1977; 2038
  • 28 Meng X.-B. Li H. Lou Q.-H. Cai M.-S. Li Z.-J. Carbohydr. Res. 2004; 339: 1497
  • 29 Tolmachova NA. Dolovanyuk VG. Gerus II. Kondratov IS. Polovinko VV. Bergander K. Haufe G. Synthesis 2011; 1149
    • 30a Muller A. Polborn K. Wanner KT. J. Heterocycl. Chem. 2007; 44: 575
    • 30b Chenard BL. Menniti FS. Curr. Pharm. Des. 1999; 5: 381
    • 30c Hofner G. Hoesl CE. Parsons C. Quack G. Wanner KT. Bioorg. Med. Chem. Lett. 2005; 15: 2231
  • 31 Das S. Addis D. Knopke LR. Bentrup U. Junge K. Bruckner A. Beller M. Angew. Chem. Int. Ed. 2011; 50: 9180
    • 32a McCrindle R. Overton KH. Raphael RA. J. Chem. Soc. 1962; 4798
    • 32b McAlees AJ. McCrindle R. Chem. Ind. 1965; 1869
  • 33 Kimura A. Takada Y. Inayoshi T. Nakao Y. Goetz G. Yoshida WY. Scheuer PJ. J. Org. Chem. 2002; 67: 1760
  • 34 Aoun R. Renaud J.-L. Dixneuf PH. Bruneau C. Angew. Chem. Int. Ed. 2005; 44: 2021
  • 35 Cui X. Surkus A.-E. Junge K. Topf C. Radnik J. Kreyenschulte C. Beller M. Nature Commun. 2016; 7: 11326
  • 36 Maj AM. Suisse I. Pinault N. Robert N. Agbossou-Niedercorn F. ChemCatChem 2014; 6: 2621
    • 37a Souvie J.-C. Fugier C. Lecouve J.-P. EP 1127876, 2001
    • 37b Sato F. Tsubaki A. Hokari H. Tanaka N. Saito M. Akahane K. Kobayashi M. EP 19920302786, 1992
    • 37c Lecouve J.-P. Fugier C. Souvier J.-C. WO 9901430, 1999
    • 37d Aoun R. Renaud J.-L. Dixneuf PH. Bruneau C. Souvie JC. Fugier C. FR 20030011226, 2003
  • 38 Khi NT. Baik H. Lee H. Yoon J. Sohn J.-H. Lee K. Nanoscale 2014; 6: 11007
  • 39 Ito M. Sakaguchi A. Kobayashi C. Ikariya T. J. Am. Chem. Soc. 2007; 129: 290
  • 40 Kovalenko OO. Volkov A. Adolfsson H. Org. Lett. 2015; 17: 446
  • 41 Yuan Y.-C. Kamaraj R. Bruneau C. Labasque T. Roisnel T. Gramage-Doria R. Org. Lett. 2017; 19: 6404
    • 42a Inoue S. Shiota H. Fukumoto Y. Chatani N. J. Am. Chem. Soc. 2009; 131: 6898
    • 42b Hasegawa N. Charra V. Inoue S. Fukumoto Y. Chatani N. J. Am. Chem. Soc. 2011; 133: 8070
  • 43 Du Y. Hyster TK. Rovis T. Chem. Commun. 2011; 47: 12074
  • 44 Shi L. Tan X. Long J. Xiong X. Yang S. Xue P. Lv H. Zhang X. Chem. Eur. J. 2017; 23: 546
  • 45 Kumar A. Janes T. Espinosa-Jalap NA. Milstein D. J. Am. Chem. Soc. 2018; 140: 7453
  • 46 Kajita Y. Matsubara S. Kurahashi T. J. Am. Chem. Soc. 2008; 130: 6058
    • 47a Le TN. Gang SG. Cho W.-J. J. Org. Chem. 2004; 69: 2768
    • 47b Ruchelman AL. Houghton PJ. Zhou N. Liu A. Liu LF. LaVoie EJ. J. Med. Chem. 2005; 48: 792
    • 47c Krane BD. Shamma M. J. Nat. Prod. 1982; 45: 377
  • 48 Ackermann L. Acc. Chem. Res. 2014; 47: 281
  • 49 Fujiwara K. Kurahashi T. Matsubara S. Org. Lett. 2010; 12: 4548
  • 50 Sueda T. Kawada A. Urashi Y. Teno N. Org. Lett. 2013; 15: 1560
  • 51 DeGlopper KS. Fodor SK. Endean TB. D. Johnson JB. Polyhedron 2016; 114: 393
  • 52 Higson S. Subrizi F. Sheppard TD. Hailes HC. Green Chem. 2016; 18: 1855
    • 53a Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 53b Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 53c Wang F. Yu S. Li X. Chem. Soc. Rev. 2016; 45: 6462
    • 53d Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 53e Liu C. Szostak M. Chem. Eur. J. 2017; 23: 7157 ; and references therein
  • 54 Yang X. Shan G. Rao Y. Org. Lett. 2013; 15: 2334