Synthesis 2019; 51(02): 414-420
DOI: 10.1055/s-0037-1610278
psp
© Georg Thieme Verlag Stuttgart · New York

Practical Deoxygenation of Oxazole N-Oxides by PCl3/Collidine

Valerii Z. Shirinian*
a  N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
,
Ilya A. Lonshakov
b  Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russian Federation   Email: [email protected]
,
Alexey V. Zakharov
a  N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
,
Andrey G. Lvov
a  N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
,
Mikhail M. Krayushkin
a  N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
› Author Affiliations
This work was supported by Russian Science Foundation (RSF Grant 14-50-00126).
Further Information

Publication History

Received: 16 July 2018

Accepted after revision: 23 August 2018

Publication Date:
21 September 2018 (online)


Abstract

A new chemoselective method for the synthesis of 2-aryl-1,3-oxazoles by deoxygenation of the corresponding N-oxides has been developed. As the deoxygenation reagent, a previously unknown complex of collidine with phosphorus trichloride in a 2:1 ratio has been used. The developed method enabled the preparation of a wide range of 2-aryl-1,3-oxazoles comprising various functional groups in good yields. The advantage of this reagent is its tolerance to nitro, methyl, hydroxyl, formyl, and acetyl groups, and double bonds. Due to chemoselectivity and availability of reagents, the method may be used for deoxygenation of N-oxides of other heterocyclic compounds (thiazole, pyridine, quinoline, etc.).

Supporting Information

 
  • References

  • 2 Fate of Pharmaceuticals in the Environment and in Water Treatment Systems. Aga DS. CRC Press; Boca Raton: 2007
  • 4 Nikitina GV. Pevzner MS. Chem. Heterocycl. Comp. 1993; 29: 127
    • 5a Londregan AT. Jennings S. Wei L. Org. Lett. 2011; 13: 1840
    • 5b Andersson H. Olsson R. Almqvist F. Org. Biomol. Chem. 2011; 9: 337
    • 6a Makosza M. Wojciechowski K. Chem. Rev. 2004; 104: 2631
    • 6b Zhang F. Duan X.-F. Org. Lett. 2011; 13: 6102
    • 7a Heaney F. Lawless E. Mahon M. McArdle P. Cunningham D. Org. Biomol. Chem. 2006; 4: 2408
    • 7b Zhao J. Wu C. Li P. Ai W. Chen H. Wang C. Larock RC. Shi F. J. Org. Chem. 2011; 76: 6837
    • 7c Tamura Y. Ikeda M. Adv. Heterocycl. Chem. 1981; 29: 71
    • 7d Youssif S. ARKIVOC 2001; (i): 242
    • 8a Minisci F. Fontana F. Vismara E. J. Heterocycl. Chem. 1990; 27: 79
    • 8b Harrowven DC. Sutton BJ. Prog. Heterocycl. Chem. 2004; 16: 27
  • 9 Katritzky AR. Lagowski JM. Chemistry of the Heterocyclic N-Oxides . Academic Press; New York: 1971. Chap. 3, 170
    • 10a Comprehensive Organic Synthesis . Vol. 8. Trost BM. Fleming L. Pergamon Press; Oxford: 1991: 390
    • 10b Konwar D. Boruah RC. Sandhu JS. Synthesis 1990; 337
    • 10c Sim TB. Ahn JH. Yoon NM. Synthesis 1996; 324
    • 10d Nakagawa H. Higuchi T. Kikuchi K. Urano Y. Nagano T. Chem. Pharm. Bull. 1998; 46: 1656
  • 11 Ochiai E. Aromatic Amine Oxides . Elsevier; Amsterdam: 1967. Chap. 5, 184
    • 12a Zhang H.-Z. Zhao Z.-L. Zhou Ch.-H. Eur. J. Med. Chem. 2018; 144: 444
    • 12b Malamas MS. Sredy J. Gunawan I. Mihan B. Sawicki DR. Seestaller L. Sullivan D. Flam BR. J. Med. Chem. 2000; 43: 995
    • 12c Han HO. Kim SH. Kim K.-H. Hur G.-C. Yim HJ. Chung H.-K. Woo SH. Koo KD. Lee C.-S. Koh JS. Kim GT. Bioorg. Med. Chem. Lett. 2007; 17: 937
    • 12d Bénardeau A. Benz J. Binggeli A. Blum D. Boehringer M. Grether U. Hilpert H. Kuhn B. Märki HP. Meyer M. Püntener K. Raab S. Ruf A. Schlatter D. Mohr P. Bioorg. Med. Chem. Lett. 2009; 19: 2468
    • 12e Raval P. Jain M. Goswami A. Basu S. Gite A. Godha A. Pingali H. Raval S. Giri S. Suthar D. Shah M. Patel P. Bioorg. Med. Chem. Lett. 2011; 21: 3103
    • 12f Hershberger PM. Peddibhotla S. Sessions EH. Divlianska DB. Correa RG. Pinkerton AB. Reed JC. Roth GP. Beilstein J. Org. Chem. 2013; 9: 900
    • 12g Shibata Y. Kagechika K. Yamaguchi M. Yoshikawa K. Chiba K. Takano H. Akiyama C. Ono M. Nishi M. Kubo H. Kobayashi Y. Usui H. Chem. Pharm. Bull. 2013; 61: 1248
    • 12h Otake K. Azukizawa S. Takeda S. Fukui M. Kawahara A. Kitao T. Shirahase H. Chem. Pharm. Bull. 2015; 63: 998
    • 12i Piemontese L. Cerchia C. Laghezza A. Ziccardi P. Sblano S. Tortorella P. Iacobazzi V. Infantino V. Convertini P. Dal Piaz F. Lupo A. Colantuoni V. Lavecchia A. Loiodice F. Eur. J. Med. Chem. 2017; 127: 379
    • 12j He S. Li K. Lin B. Hu Z. Xiao J. Hu X. Wang AQ. Xu X. Ferrer M. Southall N. Zheng W. Aubé J. Schoenen FJ. Marugan JJ. Liang TJ. Frankowski KJ. J. Med. Chem. 2017; 60: 6364
    • 13a Shirinian VZ. Lvov AG. Krayushkin MM. Lubuzh ED. Nabatov BV. J. Org. Chem. 2014; 79: 3440
    • 13b Lvov AG. Shirinian VZ. Kachala VV. Kavun AM. Zavarzin IV. Krayushkin MM. Org. Lett. 2014; 16: 4532
    • 13c Zakharov AV. Gaeva EB. Lvov AG. Metelitsa AV. Shirinian VZ. J. Org. Chem. 2017; 82: 8651
    • 14a Allan AW. Walter BH. J. Chem. Soc. C 1968; 1397
    • 14b Cai X. Yang H-j. Zhang G.-l. Synthesis 2005; 1569
    • 14c Jacobsen NW. Philippides A. Aust. J. Chem. 1985; 38: 1335
  • 15 Goto Y. Yamazaki M. Hamana M. Chem. Pharm. Bull. 1971; 19: 2050
  • 16 Lee GT. Jiang X. Vedananda TR. Prasad K. Repic O. Adv. Synth. Catal. 2004; 346: 1461
  • 17 Lvov AG. Shirinian VZ. Kavun AM. Krayushkin MM. Mendeleev Commun. 2013; 23: 268
  • 18 Shirinian VZ. Lonshakov DV. Lvov AG. Shimkin AA. Krayushkin MM. Photochem. Photobiol. Sci. 2013; 12: 1717
  • 19 Lvov AG. Bulich EYu. Metelitsa AV. Shirinian VZ. RSC Adv. 2016; 6: 59016
  • 20 Shirinian VZ. Kavun AM. Lvov AG. Zavarzin IV. Krayushkin MM. Synthesis 2017; 49: 1255
  • 21 Frolova LA. Rezvanova AA. Shirinian VZ. Lvov AG. Kulikov AV. Krayushkin MM. Troshin PA. Adv. Electron. Mater. 2016; 2: 1500219
  • 22 Lvov AG. Shirinian VZ. Zakharov AV. Krayushkin MM. Kachala VV. Zavarzin IV. J. Org. Chem. 2015; 80: 11491
  • 23 Zhao J. Li P. Xia C. Li F. RSC Adv. 2015; 5: 32835
  • 24 Burke PJ. Wong LC. Jenkins TC. Knox RJ. Stanforth SP. Bioorg. Med. Chem. Lett. 2011; 21: 7447
  • 25 Moder KP. Phosphorus(III) Chloride, e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; Chichester: 2001: 1-2
  • 26 Wade LG. Jr. Organic ChemPearson/Prentice Hall: Upper Saddle River (NJ, USA), 2005 . 6th ed; 4: 77
  • 27 Dillon KB. Reeve RN. Waddington TC. J. Chem. Soc., Dalton Trans. 1977; 1410
  • 28 Lvov AG. Shirinian VZ. Kavun AM. Krayushkin MM. Mendeleev Commun. 2014; 24: 277
  • 29 Allan AW. Walter BH. Chemistry & Industry 1965; 30: 1340