Synlett 2019; 30(01): 21-29
DOI: 10.1055/s-0037-1610263
account
© Georg Thieme Verlag Stuttgart · New York

Recent Applications of α-Carbonyl Sulfoxonium Ylides in Rhodium- and Iridium-Catalyzed C–H Functionalizations

Xiaopeng Wu
,
Song Sun
,
Jin-Tao Yu
,
Jiang Cheng*
School of Petrochemical Engineering, and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. of China   eMail: jiangcheng@cczu.edu.cn
› Institutsangaben

We thank the National Natural Science Foundation of China (No. 21572025), ‘Innovation & Entrepreneurship Talents’ Introduction Plan of Jiangsu Province, Natural Science Foundation of Jiangsu Province (BK20171193), the Key University Science Research Project of Jiangsu Province (15KJA150001), Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology (BM2012110), and the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center for their financial support. S.S. thanks the National Natural Science Foundation of China (No. 21602019) and the Young Natural Science Foundation of Jiangsu Province (BK20150263) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 10. Juli 2018

Accepted after revision: 06. August 2018

Publikationsdatum:
05. September 2018 (online)


Abstract

Sulfoxonium ylides are a special type of sulfur ylides that serve as new C1 or C2 synthons recently developed for use in C–H functionalization to access acylmethylated or cyclized compounds through the formation of metal carbene species. Many excellent works have reported the syntheses of various useful skeletons from these versatile synthons. These developments have not previously been completely investigated or reviewed. In this review, we summarize recent advances in the use of α-carbonyl sulfoxonium ylides in C–H functionalizations, including ortho-C–H acylmethylation reactions and ortho-C–H activation/cyclization reactions.

Table of Contents

1 Introduction

2 Ortho-C–H Acylmethylation Reactions

3 Ortho-C–H Activation/Cyclization Reactions

3.1 Ortho-C–H Activation/Cyclization of Anilines and Enamines

3.2 Ortho-C–H Activation/Cyclization of Azobenzenes

3.3 Ortho-C–H Activation/Cyclization of N-Methoxybenzamide

3.4 Ortho-C–H Activation/Cyclization of Imines

3.5 Ortho-C–H Activation/Cyclization of N-Azoloimines

3.6 Ortho-C–H Activation/Cyclization of Benzoylacetonitriles

3.7 Ortho-C–H Activation/Cyclization of Benzoyl Sulfoxonium Ylides

4 Conclusion

 
  • References

    • 1a Li A.-H. Dai L.-X. Aggarwal VK. Chem. Rev. 1997; 97: 2341
    • 1b McGarrigle EM. Myers EL. Illa O. Shaw MA. Riches SL. Aggarwal VK. Chem. Rev. 2007; 107: 5841
  • 2 Sun X.-L. Tang Y. Acc. Chem. Res. 2008; 41: 937
  • 3 Zhu C. Ding Y. Ye L.-W. Org. Biomol. Chem. 2015; 13: 2530
    • 4a Lu L.-Q. Li T.-R. Wang Q. Xiao W.-J. Chem. Soc. Rev. 2017; 46: 4135
    • 4b Lu L.-Q. Chen J.-R. Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 5a Kakiuchi F. Murai S. Acc. Chem. Res. 2002; 35: 826
    • 5b Colby DA. Tsai AS. Bergman PG. Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 5c Song G. Li X. Acc. Chem. Res. 2015; 48: 1007
    • 5d Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 5e Yang Y. Li K. Cheng Y. Wan D. Li M. You J. Chem. Commun. 2016; 52: 2872
    • 5f Hartwig JF. Stanley LM. Acc. Chem. Res. 2010; 43: 1461
    • 5g Davies HM. L. Manning JR. Nature 2008; 451: 417
    • 5h Tauchert ME. Incarvito CD. Rheingold AL. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2012; 134: 1482
  • 6 Barday M. Janot C. Halcovitch NR. Muir J. Aïssa C. Angew. Chem. Int. Ed. 2017; 56: 13117
  • 7 Xu Y. Zhou X. Zheng G. Li X. Org. Lett. 2017; 19: 5256
    • 8a Yamaji N. Horikawa M. Corzo G. Naoki H. Haupt J. Nakajima T. Iwashita T. Tetrahedron Lett. 2004; 45: 5371
    • 8b Díaz JG. Sazatornil JG. López Rodriguez M. Ruiz Mesia L. Vargas Arana G. J. Nat. Prod. 2004; 67: 1667
    • 9a Kawasaki T. Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 9b Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 9c Lal S. Snape TJ. Curr. Med. Chem. 2012; 19: 4828
    • 10a Shi Z. Zhang C. Li S. Pan D. Ding S. Cui Y. Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
    • 10b Zhang G. Yu H. Qin G. Huang H. Chem. Commun. 2014; 50: 4331
    • 11a Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 11b Taber DF. Tirunahari PK. Tetrahedron 2011; 67: 7195
  • 12 Vaitla J. Bayer A. Hopmann K. Angew. Chem. Int. Ed. 2017; 56: 4277
  • 13 Oh H. Han S. Pandey AK. Han SH. Mishra NK. Kim S. Chun R. Kim HS. Park J. Kim IS. J. Org. Chem. 2018; 83: 4070
  • 14 Zhu J. Sun S. Cheng J. Tetrahedron Lett. 2018; 59: 2284
    • 15a Guimond N. Gouliaras C. Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
    • 15b Ackermann L. Fenner S. Org. Lett. 2011; 13: 6548
    • 15c Sharma N. Saha R. Parveen N. Sekar G. Adv. Synth. Catal. 2017; 359: 1947
    • 15d Zhong H. Yang D. Wang S. Huang J. Chem. Commun. 2012; 48: 3236
  • 16 Xu Y. Zheng G. Yang X. Li X. Chem. Commun. 2018; 54: 670
    • 17a Zhou S. Wang J. Wang L. Song C. Chen K. Zhu J. Angew. Chem. Int. Ed. 2016; 55: 9384
    • 17b Zhou S. Wang J. Wang L. Chen K. Song C. Zhu J. Org. Lett. 2016; 18: 3806
    • 17c Wang H. Grohmann C. Nimphius C. Glorius F. J. Am. Chem. Soc. 2012; 134: 19592
    • 17d Mei R. Wang H. Warratz S. Macgregor SA. Ackermann L. Chem. Eur. J. 2016; 22: 6759
    • 17e Zhou T. Li B. Wang B. Chem. Commun. 2017; 53: 6343
    • 18a Zhou T. Li B. Wang B. Chem. Commun. 2016; 52: 14117
    • 18b Cheng Y. Bolm C. Angew. Chem. Int. Ed. 2015; 54: 12349
    • 18c Xia Y. Zhang Y. Wang J. ACS Catal. 2013; 3: 2586
    • 19a Park J. Chang S. Angew. Chem. Int. Ed. 2015; 54: 14103
    • 19b Wang F. Jin L. Kong L. Li X. Org. Lett. 2017; 19: 1812
    • 19c Wang H. Tang G. Li X. Angew. Chem. Int. Ed. 2015; 54: 13049
    • 19d Mei R. Loup J. Ackermann L. ACS Catal. 2016; 6: 793
    • 19e Hermann G. Bolm C. ACS Catal. 2017; 7: 4592
    • 19f Wang J. Zha S. Chen K. Zhang F. Song C. Zhu J. Org. Lett. 2016; 18: 2062
    • 19g Wu X. Sun S. Xu S. Cheng J. Adv. Synth. Catal. 2018; 360: 1111
    • 19h Hoang GL. Halskov KS. Ellman JA. J. Org. Chem. 2018; 83: 9522
    • 20a Wen J. Tiwari DP. Bolm C. Org. Lett. 2017; 19: 1706
    • 20b Wu Y. Chen Z. Yang Y. Zhu W. Zhou B. J. Am. Chem. Soc. 2018; 140: 42
  • 21 Zheng G. Tian M. Xu Y. Chen X. Li X. Org. Chem. Front. 2018; 5: 998
  • 22 Yang R. Wu X. Sun S. Yu J. Cheng J. Synthesis 2018; 50: 3487
  • 23 Wu X. Xiong H. Sun S. Cheng J. Org. Lett. 2018; 20: 1396
  • 24 Halskov KS. Witten MR. Hoang GL. Mercado BQ. Ellman JA. Org. Lett. 2018; 20: 2464
    • 25a Wang Q. Xu Y. Yang X. Li Y. Li X. Chem. Commun. 2017; 53: 9640
    • 25b Xie F. Yu S. Qi Z. Li X. Angew. Chem, Int. Ed. 2016; 55: 15351
    • 25c Li Y. Wang Q. Yang X. Xie F. Li X. Org. Lett. 2017; 19: 3410
  • 26 Tan X. Liu B. Li X. Li B. Xu S. Song H. Wang B. J. Am. Chem. Soc. 2012; 134: 16163
  • 27 Hu P. Zhang Y. Xu Y. Yang S. Liu B. Li X. Org. Lett. 2018; 20: 2160
  • 28 Zhou C. Fang F. Cheng Y. Li Y. Liu H. Zhou Y. Adv. Synth. Catal. 2018; 360: 2546
  • 29 Xu Y. Yang X. Zhou X. Kong L. Li X. Org. Lett. 2017; 19: 4307