Synthesis 2018; 50(20): 3997-4007
DOI: 10.1055/s-0037-1610248
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 1,3-Diols by O-Nucleophile Additions to Activated Alkenes

Diego Gamba-Sánchez
a  Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia   Email: da.gamba1361@uniandes.edu.co
,
Joëlle Prunet
b  WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK   Email: joelle.prunet@glasgow.ac.uk
› Author Affiliations
Financial support was provided by Fondo de Investigaciones de la Facultad­ de Ciencias de la Universidad de los Andes, convocatoria 2018–2019 para la Financiación de Programas de Investigación ‘use of threonine as chiral auxiliary’.
Further Information

Publication History

Received: 17 July 2018

Accepted: 19 July 2018

Publication Date:
30 August 2018 (online)


Abstract

The diastereoselective synthesis of 1,3-diols by addition of oxygen nucleophiles to activated alkenes is presented. This review focuses on homoallylic alcohol substrates that react with a relay compound to form an intermediate oxygen nucleophile, which in turn will lead to a protected 1,3-diol by intramolecular addition to the olefin moiety.

1 Introduction

2 Base Catalysis

3 Organocatalysis

4 Activation with Non-Metallic Electrophiles

5 Activation with Transition Metal Derivatives

6 Conclusions

 
  • References

  • 1 Bode SE. Wolberg M. Müller M. Synthesis 2006; 557
  • 2 Kumar P. Tripathi D. Sharma BM. Dwivedi N. Org. Biomol. Chem. 2017; 15: 733
  • 3 For a recent review of the application of the oxa-Michael reaction to the synthesis of natural products, see: Hu J. Bian M. Ding H. Tetrahedron Lett. 2016; 57: 5519
  • 4 Evans DA. Gauchet-Prunet JA. J. Org. Chem. 1993; 58: 2446
  • 5 Prunet J. Ph.D. Thesis . Harvard University; U. S. A.: 1993
    • 6a Hung DT. Nerenberg JB. Schreiber SL. J. Am. Chem. Soc. 1996; 118: 11054
    • 6b Dineen TA. Roush WR. Org. Lett. 2004; 6: 2043
    • 6c Hunter TJ. O’Doherty GA. Org. Lett. 2001; 3: 2777
    • 6d Vincent A. Prunet J. Synlett 2006; 2269
    • 6e de Lemos E. Porée F.-H. Bourin A. Barbion J. Agouridas E. Lannou M.-I. Commerçon A. Betzer J.-F. Pancrazi A. Ardisson J. Chem.–Eur. J. 2008; 14: 11092
    • 6f Palimkar SS. Uenishi J. i. Org. Lett. 2010; 12: 4160
    • 6g Albury AM. M. Jennings MP. J. Org. Chem. 2012; 77: 6929
    • 6h Bates RW. Lek TG. Synthesis 2014; 46: 1731
    • 6i Hunter TJ. Wang Y. Zheng J. O’Doherty GA. Synthesis 2016; 48: 1700
  • 7 Grimaud L. Rotulo D. Ros-Perez R. Guitry-Azam L. Prunet J. Tetrahedron Lett. 2002; 43: 7477
  • 8 Rotulo-Sims D. Grimaud L. Prunet J. C. R. Chim. 2004; 7: 941
  • 9 Rotulo-Sims D. Prunet J. Org. Lett. 2007; 9: 4147
  • 10 Aouzal R. Prunet J. Org. Biomol. Chem. 2009; 7: 3594
    • 11a Baudin JB. Hareau G. Julia SA. Ruel O. Tetrahedron Lett. 1991; 32: 1175
    • 11b Baudin JB. Hareau G. Julia SA. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 336
    • 11c Baudin JB. Hareau G. Julia SA. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 856
    • 11d Charette AB. Berthelette C. St-Martin D. Tetrahedron Lett. 2001; 42: 5149
  • 12 Oriez R. Prunet J. Tetrahedron Lett. 2010; 51: 256
  • 13 Hoppe I. Hoppe D. Wolff C. Egert E. Herbst R. Angew. Chem. Int. Ed. 1989; 28: 67
  • 14 Grimaud L. de Mesmay R. Prunet J. Org. Lett. 2002; 4: 419
  • 15 Gamba-Sanchez D. Prunet J. J. Org. Chem. 2010; 75: 3129
  • 16 Gamba-Sanchez D. Garzon-Posse F. In Molecular Rearrangements in Organic Synthesis . Rojas C. John Wiley & Sons; Hoboken: 2015: 661
  • 17 Evans DA. Nagorny P. Reynolds DJ. McRae KJ. Angew. Chem. Int. Ed. 2007; 46: 541
  • 18 Becerra-Figueroa L. Movilla S. Prunet J. Miscione GP. Gamba-Sanchez D. Org. Biomol. Chem. 2018; 16: 1277
  • 19 Electron-poor aromatic aldehydes have also been employed with quinol derivatives for the synthesis of protected 1,2-diols, see: Redondo MC. Ribagorda M. Carreño MC. Org. Lett. 2010; 12: 568
  • 20 Becerra-Figueroa L. Brun E. Mathieson M. Farrugia LJ. Wilson C. Prunet J. Gamba-Sanchez D. Org. Biomol. Chem. 2017; 15: 301
  • 21 Li F. Wang J. Xu M. Zhao X. Zhou X. Zhao W.-X. Liu L. Org. Biomol. Chem. 2016; 14: 3981
  • 22 Watanabe H. Machida K. Itoh D. Nagatsuka H. Kitahara T. Chirality 2001; 13: 379
  • 23 Tu Y. Wang Z.-X. Frohn M. He M. Yu H. Tang Y. Shi Y. J. Org. Chem. 1998; 63: 8475
    • 24a Jefford CW. Rossier J.-C. Kohmoto S. Boukouvalas J. Synthesis 1985; 29

    • For the formation of trioxanes from hydroperoxides, see:
    • 24b Jefford CW. Jaggi D. Boukouvalas J. Kohmoto S. J. Am. Chem. Soc. 1983; 105: 6497
    • 25a Rubush DM. Rovis T. Synlett 2014; 25: 713

    • For the asymmetric formation of trioxanes from hydroperoxides, see:
    • 25b Rubush DM. Morges MA. Rose BJ. Thamm DH. Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
  • 26 Matsumoto A. Asano K. Matsubara S. Chem. Commun. 2015; 51: 11693
  • 27 Li DR. Murugan A. Falck JR. J. Am. Chem. Soc. 2008; 130: 46
  • 28 Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967
  • 29 Asano K. Matsubara S. Org. Lett. 2012; 14: 1620
  • 30 Okamura T. Asano K. Matsubara S. Chem. Commun. 2012; 48: 5076
  • 31 Bartlett PA. Jernstedt KK. J. Am. Chem. Soc. 1977; 99: 4829
  • 32 Bartlett PA. Meadows JD. Brown EG. Morimoto A. Jernstedt KK. J. Org. Chem. 1982; 47: 4013
  • 33 Cardillo G. Orena M. Porzi G. Sandri S. J. Chem. Soc., Chem. Commun. 1981; 465
  • 34 Bongini A. Cardillo G. Orena M. Porzi G. Sandri S. J. Org. Chem. 1982; 47: 4626
  • 35 Lipshutz BH. Kozlowski JA. J. Org. Chem. 1984; 49: 1147
  • 36 Duan JJ. W. Smith AB. III. J. Org. Chem. 1993; 58: 3703
  • 37 Taylor RE. Jin M. Org. Lett. 2003; 5: 4959
  • 38 Mohapatra DK. Bhimireddy E. Krishnarao PS. Das PP. Yadav JS. Org. Lett. 2011; 13: 744
  • 39 Inoue M. Motomatsu S. Nakada M. Synth. Commun. 2003; 33: 2857
  • 40 Vara BA. Struble TJ. Wang W. Dobish MC. Johnston JN. J. Am. Chem. Soc. 2015; 137: 7302
  • 41 Stefan E. Taylor RE. In Stereoselective Synthesis of Drugs and Natural Products . Andrushko V. Andrushko N. John Wiley & Sons; Hoboken: 2013: 1115
  • 42 Liu K. Taylor RE. Kartika R. Org. Lett. 2006; 8: 5393
  • 43 Kartika R. Taylor RE. Angew. Chem. Int. Ed. 2007; 46: 6874
  • 44 Kartika R. Frein JD. Taylor RE. J. Org. Chem. 2008; 73: 5592
  • 45 Overman LE. Campbell CB. J. Org. Chem. 1974; 39: 1474
  • 46 Giese B. Bartmann D. Tetrahedron Lett. 1985; 26: 1197
    • 47a Sarraf ST. Leighton JL. Org. Lett. 2000; 2: 403
    • 47b Dreher SD. Hornberger KR. Sarraf ST. Leighton JL. Org. Lett. 2000; 2: 3197
    • 48a Cossy J. Blanchard N. Meyer C. Org. Lett. 2001; 3: 2567
    • 48b Meyer C. Blanchard N. Defosseux M. Cossy J. Acc. Chem. Res. 2003; 36: 766
  • 49 Evans PA. Grisin A. Lawler MJ. J. Am. Chem. Soc. 2012; 134: 2856
  • 50 Xiong F. Wang H. Yan L. Xu L. Tao Y. Wu Y. Chen F. Org. Biomol. Chem. 2015; 13: 9813
  • 51 Hayashi Y. Saitoh T. Arase H. Kawauchi G. Takeda N. Shimasaki Y. Sato I. Chem.–Eur. J. 2018; 24: 4909
  • 52 Wang L. Menche D. Angew. Chem. Int. Ed. 2012; 51: 9425
  • 53 Goodwin JA. Ballesteros CF. Aponick A. Org. Lett. 2015; 17: 5574
  • 54 Cornil J. Gonnard L. Guérinot A. Reymond S. Cossy J. Eur. J. Org. Chem. 2014; 4958
  • 55 Herrmann AT. Saito T. Stivala CE. Tom J. Zakarian A. J. Am. Chem. Soc. 2010; 132: 5962
  • 56 Tanaka S. Gunasekar R. Tanaka T. Iyoda Y. Suzuki Y. Kitamura M. J. Org. Chem. 2017; 82: 9160
  • 57 Spreider PA. Breit B. Org. Lett. 2018; 20: 3286
  • 58 Holt D. Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 7857