Synthesis 2018; 50(19): 3862-3874
DOI: 10.1055/s-0037-1610246
feature
© Georg Thieme Verlag Stuttgart · New York

Dehydrative Cross-Coupling of 1-Phenylethanol Catalysed by Palladium Nanoparticles Formed in situ Under Acidic Conditions

a  School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
c  Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
,
Thomas W. Bousfield
c  Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
,
Jay J. Dunsford
a  School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
,
James Adams
a  School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
,
Joshua Britton
a  School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
,
Michael W. Fay
b  Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, Nottingham, NG7 2RD, UK
,
Athanasios Angelis-Dimakis
c  Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
› Author Affiliations
This work was supported by the University of Nottingham, the EPSRC (First-Grant EP/J003298/1) and the University of Huddersfield (PhD studentship for T.W.B).

Further Information

Publication History

Received: 29 June 2018

Accepted after revision: 24 July 2018

Publication Date:
27 August 2018 (online)

Abstract

A dehydrative cross-coupling of 1-phenylethanol catalysed by sugar derived, in situ formed palladium(0) nanoparticles under acidic conditions is realised. The acidic conditions allow for use of alcohols as a feedstock in metal-mediated coupling reactions via their in situ dehydration and subsequent cross-coupling. Extensive analysis of the size and morphology of the palladium nanoparticles formed in situ showed that the zero-valent metal was surrounded by hydrophilic hydroxyl groups. EDX-TEM imaging studies using a prototype silicon drift detector provided insight into the problematic role of molecular oxygen in the system. This increased understanding of the catalyst deactivation allowed for the development of the cross-coupling methodology. A 250-12,000 fold increase in molar efficiency was observed when compared to related two-step protocols that use alternative feedstocks for the palladium-mediated synthesis of stilbenes. This work opens up a new research area in which the active catalyst is formed, stabilised and regenerated by a renewable sugar.

Supporting Information

 
  • References


    • For recent examples, see:
    • 1a Cheng G. Wang P. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 8183
    • 1b Bao X. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2017; 56: 9577
    • 1c Qi X. Chen P. Liu G. Angew. Chem. Int. Ed. 2017; 56: 9517
    • 2a Heck RF. Acc. Chem. Res. 1979; 12: 146
    • 2b Dounay AB. Overman LE. Chem. Rev. 2003; 103: 2945
    • 3a Czaplik WM. Mayer M. Cvengros J. von Wangelin AJ. ChemSusChem 2009; 2: 396
    • 3b McGuinness DS. Cavell KJ. Skelton BW. White AH. Organometallics 1999; 18: 1596
    • 3c Yin L. Liebscher J. Chem. Rev. 2007; 107: 133
    • 3d Beletskaya IP. Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 4a Dupont J. de Souza RF. Suares PA. Z. Chem. Rev. 2002; 102: 3667
    • 4b Li C.-J. Chem. Rev. 2005; 105: 3095
    • 4c Lamblin M. Nassar-Hardy L. Hierso J.-C. Fouquet E. Felpin F.-X. Adv. Synth. Catal. 2010; 352: 33
    • 5a Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
    • 5b Fu GC. Acc. Chem. Res. 2008; 41: 1555
    • 5c Carmichael AJ. Earle MJ. Holbrey JD. McCormac PB. Sneddon KR. Org. Lett. 1999; 1: 997
    • 5d Deshmukh RR. Rajagopal R. Srinivasan KV. Chem. Commun. 2001; 1544
    • 6a Taylor JG. Moro AV. Correia CR. D. Eur. J. Org. Chem. 2011; 1403
    • 6b Beletskaya IP. Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 7a Li Z. Gelbaum C. Fisk JS. Holden B. Jaganathan A. Whiteker GT. Pollet P. Liotta CL. J. Org. Chem. 2016; 81: 8520
    • 7b Kantam ML. Reddy PV. Srinivas P. Bhargava S. Tetrahedron Lett. 2011; 52: 4490
    • 8a Saiyed AS. Bedekar AV. Tetrahedron Lett. 2010; 51: 6227
    • 8b Meng G. Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
  • 9 Ruan J. Li X. Saidi O. Xiao J. J. Am. Chem. Soc. 2008; 130: 2424
  • 10 For a related example of dehalogenative cross-coupling, see: Jha AK. Kishor S. Jain N. RSC Adv. 2015; 5: 55218
  • 11 Colbon P. Barnard JH. Purdie M. Mulholland K. Kozhevnikoc I. Xiao J. Adv. Synth. Catal. 2012; 354: 1395
  • 12 For the dehydration of aryl alcohols in Mizoroki–Heck reactions in ionic liquids, see: Kumar R. Shard A. Bharti R. Thopate Y. Sinha AK. Angew. Chem. Int. Ed. 2012; 51: 2636
  • 13 Shad A. Rawat K. Sinha AK. Padwad Y. Kumar D. Eur. J. Org. Chem. 2016; 5941
  • 14 Andhare NH. Thopate Y. Shamsuzzama Kumar L. Sharma T. Siddiqi MI. Sinha AK. Nazir A. Tetrahedron 2018; 74: 1655
  • 15 Buijink JK. F. Lange JP. Bos AN. R. Horton AD. Niele FG. M. In Mechanisms in Homogenous and Heterogeneous Epoxidation Catalysts . Oyama ST. Elsevier; Amsterdam: 2008: 355
  • 16 Cavani F. Trifiró F. Appl. Catal., A. 1995; 133: 219
  • 18 Kogevinas M. Gwinn WM. Kriebel D. Phillips DH. Sim M. Bertke SJ. Calaf GM. Colosio C. Fritz JM. Fukushima S. Hemminki K. Jensen AA. Kolstad H. Mráz J. Nesnow S. Nylander-French LA. Parent ME. Sandy M. Smith-Roe SL. Stoner G. Suzuki T. Teixeira JP. Vodicka P. Tornero-Velez R. Guyton KZ. Grosse Y. El Ghissassi F. Bouvard V. Benbrahim-Tallaa L. Guha N. Vilahur N. Driscoll T. Hall A. Middleton D. Jaillet C. Mattock H. Straif K. Lancet Oncol. 2018; DOI: 10.1016/ S1470-2045(18)30316-4.
    • 19a Camp JE. Dunsford JJ. Cannons EP. Restorick WJ. Gadzhieva A. Fay MW. Smith RJ. ACS Sustainable Chem. Eng. 2014; 2: 500
    • 19b Monopoli A. Calò V. Ciminale F. Cotugno P. Angelici C. Cioffi N. Nacci A. J. Org. Chem. 2010; 75: 3908
  • 20 For a review, see: Kyne S. Camp JE. ACS Sustainable Chem. Eng. 2017; 5: 41
  • 21 Camp JE. Dunsford JJ. Dacosta OS. G. Blundell RK. Adams J. Britton J. Smith RJ. Bousfield TW. Fay MK. RSC Adv. 2016; 6: 16115
  • 22 Stahl SS. Science 2005; 309: 1824
  • 23 See the Supporting Information for full details.
  • 24 Ruan J. Xiao J. Acc. Chem. Res. 2011; 44: 614
    • 25a Qin L. Ren X. Lu Y. Li Y. Zhou J. Angew. Chem. Int. Ed. 2012; 51: 5915
    • 25b Qin L. Hirao H. Zhou J. Chem. Commun. 2012; 10236
  • 26 McGonagle FI. Sneddon HF. Jamieson C. Watson AJ. B. ACS Sustainable Chem. Eng. 2014; 2: 523

    • For recent examples of Mol. E% calculations, see:
    • 27a Malferrari D. Armenise N. Decesari S. Galletti P. Tagiavini E. ACS Sustainable Chem. Eng. 2015; 3: 1579
    • 27b Agrawal NR. Bahekar SP. Sarode PB. Zade SS. Chandak HS. RSC Adv. 2015; 5: 47053
    • 27c Reid BT. Reed SM. Green Chem. 2016; 18: 4263
    • 27d Mistry L. Mapesa K. Bousfield TW. Camp JE. Green Chem. 2017; 19: 2123
  • 28 Rohilla S. Pant P. Jain N. RSC Adv. 2015; 5: 31311
  • 29 Littke AF. Fu GC. J. Am. Chem. Soc. 2001; 123: 6989
    • 30a Comotti M. Pella CD. Falletta E. Rossi M. Adv. Synth. Catal. 2006; 348: 313
    • 30b Panigrahi S. Kundu S. Ghosh SK. Nath S. Pal T. Colloids Surf. A 2005; 264: 133
  • 31 Abbadi A. van Bekkum H. J. Mol. Catal. A: Chem. 1995; 97: 111
  • 32 Rich PR. Biochem. Soc. Trans. 2003; 31: 1095
  • 33 Reetz MT. Westermann E. Angew. Chem. Int. Ed. 2000; 39: 165
  • 34 Fujimori K. Aust. J. Chem. 1977; 30: 685
  • 35 Filipe V. Hawe A. Jiskoot J. Pharm. Res. 2010; 27: 796
  • 36 Schätzel K. Drewel M. Ahrens J. J. Phys.: Condens. Matter 1990; 2: SA393
  • 37 Roberts GS. Kozak D. Anderson W. Broom MF. Vogel R. Trau M. Small 2010; 6: 2653
  • 38 Peng Z.-Y. Ma F.-F. Zhu L.-F. Xie X.-M. Zhang Z. J. Org. Chem. 2009; 74: 6855
  • 39 Ganapathy D. Sekar G. Org. Lett. 2014; 16: 3856
  • 40 Fu S. Chen N.-Y. Liu X. Shao Z. Luo S.-P. Liu Q. J. Am. Chem. Soc. 2016; 138: 8588
  • 41 Lei C. Yip YJ. Zhou JS. J. Am. Chem. Soc. 2017; 139: 6086
  • 42 Niwa T. Nakada M. J. Am. Chem. Soc. 2012; 134: 13538
  • 43 Tang J. Hackenberger D. Goossen LJ. Angew. Chem. Int. Ed. 2016; 55: 11296
  • 44 Cahiez G. Gager O. Lecomte F. Org. Lett. 2008; 10: 5255
  • 45 Agasti S. Dey A. Maiti D. Chem. Commun. 2016; 12191
  • 46 Yu J.-Y. Shimizu R. Kuwano R. Angew. Chem. Int. Ed. 2010; 49: 6396
  • 47 Alacid E. Nájera C. J. Org. Chem. 2008; 73: 2315
  • 48 Zhong J.-J. Liu Q. Wu C.-J. Meng Q.-Y. Gao X.-W. Li Z.-J. Chen B. Tung C.-H. Wu L.-Z. Chem. Commun. 2016; 1800
  • 49 Gonzalez-de-Castro A. Xiao J. J. Am. Chem. Soc. 2015; 137: 8206
  • 50 Hansmann MH. López-Andarias A. Rettenmeier E. Egler-Lucas C. Rominger F. Hashmi AS. L. Romero-Nieto C. Angew. Chem. Int. Ed. 2016; 55: 1196
  • 51 Wu G. Zhao X. Ji W. Zhang Y. Wang J. Chem. Commun. 2016; 1961
  • 52 Sore HF. Blackwell DT. MacDonald SJ. Spring DR. Org. Lett. 2010; 12: 2806