Synthesis 2018; 50(20): 4008-4018
DOI: 10.1055/s-0037-1610241
short review
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Reactions of ortho-Quinone Methide and ortho-Quinone Methide Imines and Their Utility in Natural Product Synthesis

Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK   Email: [email protected]
,
Hossay Abas
Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK   Email: [email protected]
,
Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK   Email: [email protected]
› Author Affiliations
C.D.T.N. thanks Syngenta (Pharmacat consortium) for a Ph.D. studentship.
Further Information

Publication History

Received: 19 July 2018

Accepted: 19 July 2018

Publication Date:
14 August 2018 (online)


These authors contributed equally to this review.

Abstract

Herein presented is a review of the reactivity and synthetic utility of ortho-quinone methides and ortho-quinone methide imines. These versatile intermediates have received significant attention in the literature and new methods for their preparation and reaction as well as recent applications in total synthesis are discussed.

1 Introduction

2 Conjugate Addition Reactions

3 Concerted Cycloaddition Reactions

4 Stepwise Addition Reactions

5 Applications in Total Synthesis

6 Conclusion

 
  • References

  • 1 Van De Water RW. Pettus TR. R. Tetrahedron 2002; 58: 5367
  • 2 Singh MS. Nagaraju A. Anand N. Chowdhury S. RSC Adv. 2014; 4: 55924
  • 3 Jaworski AA. Scheidt KA. J. Org. Chem. 2016; 81: 10145
  • 4 Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356
  • 5 Akiyama T. Chem. Rev. 2007; 107: 5744
  • 6 El-Sepelgy O. Haseloff S. Alamsetti SK. Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923
  • 7 Hsiao CC. Liao HH. Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
  • 8 Lai Z. Wang Z. Sun J. Org. Lett. 2015; 17: 6058
  • 9 Chatupheeraphat A. Liao HH. Mader S. Sako M. Sasai H. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 4803
  • 10 Yue C. Na F. Fang X. Yang C. Antilla J. Angew. Chem. Int. Ed. 2018; DOI: in press; 10.1002/anie.201804330.
  • 11 Gebauer K. Reuß F. Spanka M. Schneider C. Org. Lett. 2017; 19: 4588
  • 12 Saha S. Schneider C. Chem. Eur. J. 2015; 21: 2348
  • 13 Saha S. Schneider C. Org. Lett. 2015; 17: 648
  • 14 Gharui C. Singh S. Pan SC. Org. Biomol. Chem. 2017; 15: 7272
  • 15 Gheewala CD. Hirschi JS. Lee W.-H. Paley DW. Vetticatt MJ. Lambert TH. J. Am. Chem. Soc. 2018; 140: 3523
  • 16 Kretzschmar M. Hodík T. Schneider C. Angew. Chem. Int. Ed. 2016; 55: 9788
  • 17 Li LZ. Wang CS. Guo WF. Mei GJ. Shi F. J. Org. Chem. 2018; 83: 614
  • 18 Zhao LM. Zhang AL. Gao HS. Zhang JH. J. Org. Chem. 2015; 80: 10353
  • 19 Xie Y. List B. Angew. Chem. Int. Ed. 2017; 56: 4936
  • 20 Jarrige L. Blanchard F. Masson G. Angew. Chem. Int. Ed. 2017; 56: 10573
  • 21 Kretzschmar M. Hofmann F. Moock D. Schneider C. Angew. Chem. Int. Ed. 2018; 57: 4774
  • 22 Wilcke D. Herdtweck E. Bach T. Synlett 2011; 1235
  • 23 Zhou J. Xie H. Org. Biomol. Chem. 2018; 16: 380
  • 24 Spivey AC. Laraia L. Bayly AR. Rzepa HS. White AJ. P. Org. Lett. 2010; 12: 900
  • 25 Abas H. Linsdall SM. Mamboury M. Rzepa HS. Spivey AC. Org. Lett. 2017; 19: 2486
  • 26 Tih RG. Sondengam BL. Martin MT. Bodo B. Phytochemistry 1990; 29: 2289
  • 27 Born M. Carrupt P.-A. Zini R. Brée F. Tillement J.-P. Hostettmann K. Testa B. Helv. Chim. Acta 1996; 79: 1147
  • 28 Feng Z.-G. Bai W.-J. Pettus TR. R. Angew. Chem. Int. Ed. 2015; 54: 1864
  • 29 Rukachaisirikul T. Innok P. Aroonrerk N. Boonamnuaylap W. Limrangsun S. Boonyon C. Woonjina U. Suksamrarn A. J. Ethnopharmacol. 2007; 110: 171
  • 30 Turner AB. Q. Rev. Chem. Soc. 1964; 18: 347
  • 31 Chapman OL. Engel MR. Springer JP. Clardy JC. J. Am. Chem. Soc. 1971; 93: 6696
  • 32 Willis NJ. Bray CD. Chem. Eur. J. 2012; 18: 9160
  • 33 Selenski C. Pettus TR. R. J. Org. Chem. 2004; 69: 9196
  • 34 Mejorado LH. Pettus TR. R. J. Am. Chem. Soc. 2006; 128: 15625
  • 35 Selenski C. Pettus TR. R. Tetrahedron 2006; 62: 5298
  • 36 Wenderski TA. Huang S. Pettus TR. R. J. Org. Chem. 2009; 74: 4104
  • 37 Green JC. Pettus TR. R. J. Am. Chem. Soc. 2011; 133: 1603
  • 38 Wenderski TA. Marsini MA. Pettus TR. R. Org. Lett. 2011; 13: 118
  • 39 Bai WJ. Green JC. Pettus TR. R. J. Org. Chem. 2012; 77: 379
  • 40 Green JC. Jiménez-Alonso S. Brown ER. Pettus TR. R. Org. Lett. 2011; 13: 5500
  • 41 Green JC. Brown ER. Pettus TR. R. Org. Lett. 2012; 14: 2929
  • 42 Gharpure SJ. Sathiyanarayanan AM. Vuram PK. RSC Adv. 2013; 3: 18279
  • 43 Spence JT. J. George JH. Org. Lett. 2013; 15: 3891
  • 44 Spence JT. J. George JH. Org. Lett. 2015; 17: 5970
  • 45 Markwell-Heys AW. Kuan KK. W. George JH. Org. Lett. 2015; 17: 4228
  • 46 Tran DN. Cramer N. Chem. Eur. J. 2014; 20: 10654
  • 47 Newton CG. Tran DN. Wodrich MD. Cramer N. Angew. Chem. Int. Ed. 2017; 56: 13776
  • 48 Lawrence AL. Adlington RM. Baldwin JE. Lee V. Kershaw JA. Thompson AL. Org. Lett. 2010; 12: 1676
  • 49 Song L. Yao H. Tong R. Org. Lett. 2014; 16: 3740
  • 50 Wojciechowski K. Eur. J. Org. Chem. 2001; 3587
  • 51 Walden DM. Jaworski AA. Johnston RC. Hovey MT. Baker HV. Meyer MP. Scheidt KA. Cheong PH. Y. J. Org. Chem. 2017; 82: 7183
  • 52 Crawley SL. Funk RL. Org. Lett. 2003; 5: 3169
  • 53 May JA. Zeidan RK. Stoltz BM. Tetrahedron Lett. 2003; 44: 1203
  • 54 Fuchs JR. Funk RL. J. Am. Chem. Soc. 2004; 126: 5068
  • 55 Crawley SL. Funk RL. Org. Lett. 2006; 8: 3995
  • 56 Belmar J. Funk RL. J. Am. Chem. Soc. 2012; 134: 16941
  • 57 Wu H. Xue F. Xiao X. Qin Y. J. Am. Chem. Soc. 2010; 132: 14052
  • 58 Xu Z. Bao X. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2015; 54: 14937