Synthesis 2018; 50(19): 3833-3842
DOI: 10.1055/s-0037-1610208
short review
© Georg Thieme Verlag Stuttgart · New York

Capturing Waste Heat Energy with Charge-Transfer Organic Thermoelectrics

Vladimir Dimitrov*
a  Laboratory of Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Build. 9, Sofia 1113, Bulgaria   Email: [email protected]
,
Simon Woodward*
b  GSK Carbon Neutral Laboratories for Sustainable Chemistry, Jubilee Campus, University of Nottingham, Nottingham NG7 2TU, United Kingdom   Email: [email protected]
› Author Affiliations
Work by the authors in the TTT area was initiated under funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308768.
Further Information

Publication History

Received: 05 May 2018

Accepted: 07 June 2018

Publication Date:
12 July 2018 (online)


Abstract

Electrically conducting organic salts, known for over 60 years, have recently demonstrated new abilities to convert waste heat directly into electrical power via the thermoelectric effect. Multiple opportunities are emerging for new structure–property relationships and for new materials to be obtained through synthetic organic chemistry. This review highlights key aspects of this field, which is complementary to current efforts based on polymeric, nanostructured or inorganic thermoelectric materials and indicates opportunities whereby mainstream organic chemists can contribute.

1 What Are Thermoelectrics? And Why Use Them?

2 Current Organic and Hybrid Thermoelectrics

3 Unique Materials from Tetrathiotetracenes

4 Synthesis of Tetrathiotetracenes

5 Materials and Device Applications

6 Future Perspectives

 
  • References


    • For a primer in ‘inorganic-based’ development of TE materials, see:
    • 1a Goldsmid HJ. Introduction to Thermoelectricity . Springer; Berlin: 2010
    • 1b Impressively, in 1954, Julien Goldsmid was able to already show TE/Peltier cooling below 0 °C using Bi2Te3; this was the same year that the first poorly electrically conducting organic charge-transfer complexes had only just appeared, see: Akamatsu H. Inokuchi H. Matsunaga Y. Nature 1954; 173: 168
  • 2 The most recent (2014) exceptional inorganic material is SnSe, showing ZT up to 2.6 (but at 650 °C), see: Zhao LD. Lo SH. Zhang YS. Sun H. Tan GJ. Uher C. Wolverton C. Dravid VP. Kanatzidis MG. Nature 2014; 508: 373 ; and citations thereof
  • 3 Thus far developments in the organic area have been dominated by polymer systems, especially poly(3,4-ethylenedioxythiophene) (PEDOT). For an excellent introduction to the area of organic (polymer) TEs, see: Taroni PJ. Hoces I. Stingelin N. Heeney M. Bilotti E. Isr. J. Chem. 2014; 54: 534 ; and references therein and citations thereof
  • 4 Parker T. Marder S. Synthetic Methods in Organic Electronic and Photonic Materials: A Practical Guide . Royal Society of Chemistry; Cambridge: 2015
  • 5 Kroon R. Mengistie DA. Kiefer D. Hynynen J. Ryan JD. Yu L. Müller C. Chem. Soc. Rev. 2016; 45: 6147 ; and references therein
    • 6a Harada K. Sumino M. Adachi C. Tanaka S. Miyazaki K. App. Phys. Lett. 2010; 96: 253304
    • 6b Higher Seebeck values (ca. 250–500 (V K–1) have been reported but at minimal current, see: von Mühlenen A. Errien N. Schaer M. Bussac M.-N. Zuppiroli L. Phys. Rev. B 2007; 75: 115338
    • 7a Cho C. Wallace KL. Tzeng P. Hsu J.-H. Yu C. Grunlan JC. Adv. Energy Mater. 2016; 6: 1502168
    • 7b Blackburn JL. Ferguson AF. Cho C. Grunlan JC. Adv. Mater. 2018; 30: 1704386 ; and references therein
  • 8 Sun Y. Qiu L. Tang L. Geng H. Wang H. Zhang F. Huang D. Xu W. Yue P. Guan Y. Jiao F. Sun Y. Tang D. Di C. Yi Y. Zhu D. Adv. Mater. 2016; 28: 3351
  • 9 Shi K. Zhang F. Di C.-A. Yan T.-W. Zou Y. Zhou X. Zhu D. Wang J.-Y. Pei J. J. Am. Chem. Soc. 2015; 137: 6979
    • 10a In p-type materials: Russ B. Glaudell A. Urban JL. Chabinyc ML. Segalman RL. Nat. Rev. Mater. 2016; 1: 16050
    • 10b Recently, a similar trend was found in organic n-type materials: Zuo G. Li Z. Wang E. Kemerink M. Adv. Electron. Mater. 2018; 4: 1700501
  • 11 For a historical summary of organic superconductors, see: Jérome D. In The Physics of Organic Superconductors and Conductors, Springer Series in Materials Science. Vol. 110. Lebed A. Springer-Verlag; Berlin: 2008: 3

    • For overviews of TTT materials, see:
    • 12a Otsubo T. Takimiya K. Rev. Heteroatom Chem. 1997; 16: 69
    • 12b Otsubo T. Takimiya K. Aso Y. Phosphorus, Sulfur Silicon Relat. Elem. 1998; 136: 447
    • 12c Otsubo T. Synlett 1997; 544
    • 12d Bendikov M. Wudl F. Perepichka DF. Chem. Rev. 2004; 104: 4891
    • 12e Zhang L. Fakhouri SM. Liu F. Timmons JC. Ram NA. Briseno AL. J. Mater. Chem. 2011; 21: 1329
  • 13 Peierls was the first to predict that a perfectly spaced 1D lattice would distort to favour pairwise interactions over longer range band structures leading to insulating over conducting behaviour. For a more formal introduction see chapter 4 in: Roth S. Carrol D. In One-Dimensional Metals . Wiley-VCH; Weinheim: 2015. 3rd Ed.
  • 14 Quasicrystals are ordered structures that additionally show non-periodic behaviour. They were discovered by Dan Shechtman (Nobel Laureate, 2011). For an introductory text, see: Janot C. In Quasicrystals: A Primer . 2nd Ed. Oxford University Press; Oxford: 2012
  • 15 Dresselhaus MS. Chen G. Tang MY. Yang RG. Lee H. Wang DZ. Ren ZF. Fleurial J.-P. Gogna P. Adv. Mater. 2007; 19: 1043
  • 16 Casian A. Dusciac V. Coropceanu I. Phys. Rev. B 2002; 66: 165404
  • 17 Casian A. Phys. Rev. B 2010; 81: 155415
    • 19a Perez-Alberne EA. US Patent 3723417 A 19730327, 1973 ; Chem. Abstr. 1973, 78, 159696
    • 19b Marschalk C. Stumm C. Bull. Soc. Chim. Fr. 1948; 418 ; Chem. Abstr. 1950, 44, 49302
    • 19c Balodis K. Tezisy Dokl. Konf. Molodykh Uch. 1978; 26-27
    • 19d (conference proceedings in Russian) Chem. Abstr. 1980; 92: 215353
    • 19e Medne R. Kraupsa I. Neilands O. Kimijas Serija 1989; 633 ; Chem. Abstr. 1990, 112, 178743
    • 19f Alder A. EP 511164 A1, 1992 ; Chem. Abstr. 1993, 118, 101960
  • 20 Garrett MR. Durán-Peña MJ. Lewis W. Pudzs K. Uzulis J. Mihailovs I. Tyril B. Shine J. Smith MF. Rutkis M. Woodward S. J. Mater. Chem. C 2018; 6: 3403
    • 21a Yagodkin E. Xia Y. Kalihari V. Frisbie CD. Douglas CJ. J. Phys. Chem. C 2009; 113: 16544
    • 21b Yagodkin E. McGarry KA. Douglas CJ. Org. Prep. Proced. Int. 2011; 43: 360
  • 22 Huewe F. Steeger A. Kostova K. Burroughs L. Bauer I. Strohriegl P. Dimitrov V. Woodward S. Pflaum J. Adv. Mater. 2017; 29: 1605682
    • 23a Qu H. Chi C. Curr. Org. Chem. 2010; 14: 2070
    • 23b Watanabe M. Chen K.-Y. Chang YJ. Chow TJ. Acc. Chem. Res. 2013; 46: 1606
    • 23c Dorel R. Echavarren AM. Eur. J. Org. Chem. 2017; 14
  • 24 Woodward S. Ackermann M. Ahirwar S. Burroughs L. Garrett MR. Ritchie J. Shine J. Tyril B. Simpson K. Woodward P. Chem. Eur. J. 2017; 23: 7819 ; and references therein
  • 25 Kaur I. Jazdzyk M. Stein NN. Prusevich P. Miller GP. J. Am. Chem. Soc. 2010; 132: 1261
  • 26 Dimitrov V. manuscript in preparation.
  • 27 Reichwagen J. Hopf H. Del Guerzo A. Belin C. Bouas-Laurent H. Desvergne J.-P. Org. Lett. 2005; 7: 971
    • 28a Netka J. Crump SL. Rickborn B. J. Org. Chem. 1986; 51: 1189
    • 28b Gribble GW. Perni RB. J. Org. Chem. 1985; 50: 2934
  • 29 Luo J. Hart H. J. Org. Chem. 1987; 52: 4833
  • 30 Pudzs K. Vembris A. Rutkis M. Woodward S. Adv. Electron. Mater. 2017; 3: 1600429
  • 31 Kang SD. Snyder GJ. Nat. Mater. 2017; 16: 252
  • 32 Magar KB. S. Xia L. Lee YR. Chem. Commun. 2015; 51: 8592
  • 33 Patney HK. J. Org. Chem. 1988; 53: 6106