Synthesis 2018; 50(19): 3749-3786
DOI: 10.1055/s-0037-1610206
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Total Synthesis via Metathesis Reactions

Iván Cheng-Sánchez
Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos s/n. 29071-Málaga, Spain   eMail: frsarabia@uma.es
,
Francisco Sarabia*
Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos s/n. 29071-Málaga, Spain   eMail: frsarabia@uma.es
› Institutsangaben
This work was supported financially by the Ministerio de Economía y Competitividad (MINECO) (Reference CTQ2014-60223-R)
Weitere Informationen

Publikationsverlauf

Received: 16. April 2018

Accepted after revision: 30. Mai 2018

Publikationsdatum:
18. Juli 2018 (online)


Abstract

The metathesis reactions, in their various versions, have become a powerful and extremely valuable tool for the formation of carbon–carbon bonds in organic synthesis. The plethora of available catalysts to perform these reactions, combined with the various transformations that can be accomplished, have positioned the metathesis processes as one of the most important reactions of this century. In this review, we highlight the most relevant synthetic contributions published between 2012 and early 2018 in the field of total synthesis, reflecting the state of the art of this chemistry and demonstrating the significant synthetic potential of these methodologies.

1 Introduction

2 Alkene Metathesis in Total Synthesis

2.1 Total Synthesis Based on a Ring-Closing-Metathesis Reaction

2.2 Total Synthesis Based on a Cross-Metathesis Reaction

2.3 Strategies for Selective and Efficient Metathesis Reactions of Alkenes

2.3.1 Temporary Tethered Ring-Closing Metathesis

2.3.2 Relay Ring-Closing Metathesis

2.3.3 Stereoselective Alkene Metathesis

2.3.4 Alkene Metathesis in Tandem Reactions

3 Enyne Metathesis in Total Synthesis

3.1 Total Syntheses Based on a Ring-Closing Enyne-Metathesis Reaction

3.2 Total Syntheses Based on an Enyne Cross-Metathesis Reaction

3.3 Enyne Metathesis in Tandem Reactions

4 Alkyne Metathesis in Total Synthesis

4.1 Total Synthesis Based on a Ring-Closing Alkyne-Metathesis Reaction

4.2 Other Types of Alkyne-Metathesis Reactions

5 Conclusions

 
  • References


    • Metathesis reactions include not only alkene, enyne, and alkyne metatheses, but also carbonyl–olefin metathesis, which are not included in this review. For representative reviews about these reactions see:
    • 1a Ravindar L. Lekkala R. Rakesh KP. Asiri AA. Marwani HM. Quin H.-L. Org. Chem. Front. 2018; 5: 1381
    • 1b Ludwig JR. Schindler CS. Synlett 2017; 28: 1501
  • 2 Handbook of Metathesis . Grubbs RH. Wiley-VCH; Weinheim: 2015: 2nd ed., Vols. 1-3
  • 3 McGinnis J. Katz TJ. Hurwitz S. J. Am. Chem. Soc. 1976; 98: 605
  • 4 Hérisson J.-L. Chauvin Y. Makromol. Chem. 1971; 141: 161
  • 5 Schrock RR. Murdzek JS. Bazan GC. Robbins J. DiMare M. O’Regan M. J. Am. Chem. Soc. 1990; 112: 3875
  • 6 Fu GC. Nguyen ST. Grubbs RH. J. Am. Chem. Soc. 1993; 115: 9856
  • 7 Schwab P. France MB. Ziller JW. Grubbs RH. Angew. Chem., Int. Ed. Engl. 1995; 34: 2039
  • 8 Scholl M. Ding S. Lee CW. Grubbs RH. Org. Lett. 1999; 1: 953
  • 9 Harrity JP. A. La DS. Cefalo DR. Visser MS. Hoveyda AH. J. Am. Chem. Soc. 1998; 120: 2343
  • 10 Garber SB. Kingsbury JS. Gray BL. Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
  • 11 Wakamatsu H. Blechert S. Angew. Chem. Int. Ed. 2002; 41: 2403
  • 12 Fürstner A. Grabowski J. Lehmann CW. J. Org. Chem. 1999; 64: 8275
  • 13 Jafarpour L. Schanz H.-J. Stevens ED. Nolan SP. Organometallics 1999; 18: 5416
  • 14 Grela K. Harutyunyan S. Michrowska A. Angew. Chem. Int. Ed. 2002; 41: 4038
  • 15 Zhan ZJ. US 20070043180, 2007 ; Chem. Abstr. 2007, 146, 142834
  • 16 Stewart IC. Ung T. Pletnev AA. Berlin JM. Grubbs RH. Schrodi Y. Org. Lett. 2007; 9: 1589
  • 17 Love JA. Morgan JP. Trnka TM. Grubbs RH. Angew. Chem. Int. Ed. 2002; 41: 4035
  • 18 Williams MJ. Kong J. Chung CK. Brunskill A. Campeau L.-C. McLaughlin M. Org. Lett. 2016; 18: 1952
    • 19a Malcolmson SJ. Meek SJ. Sattely ES. Schrock RR. Hoveyda AH. Nature (London) 2008; 456: 933
    • 19b Lee Y.-L. Schrock RR. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 10652
    • 19c Sattely ES. Meek SJ. Malcolmson SJ. Schrock RR. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 943
    • 19d Yu M. Wang C. Kyle AF. Jakubec P. Dixon DJ. Schrock RR. Hoveyda AH. Nature (London) 2011; 479: 88
    • 19e Wang C. Haeffner F. Schrock RR. Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 1939
  • 20 Jiang AJ. Simpson JH. Müller P. Schrock RR. J. Am. Chem. Soc. 2009; 131: 7770
    • 21a Rosebrugh LE. Herbert MB. Marx VM. Keitz BK. Grubbs RH. J. Am. Chem. Soc. 2013; 135: 1276
    • 21b Cannon JS. Grubbs RH. Angew. Chem. Int. Ed. 2013; 52: 9001
    • 22a Khan RK. M. Torker S. Hoveyda AH. J. Am. Chem. Soc. 2013; 135: 10258
    • 22b Koh MJ. Khan RK. M. Torker S. Yu M. Mikus MS. Hoveyda AH. Nature (London) 2015; 517: 181
  • 23 Hong SH. Grubbs RH. J. Am. Chem. Soc. 2006; 128: 3508
  • 24 Kingsbury JS. Garber SB. Giftos JM. Gray BL. Okamoto MM. Farrer RA. Fourkas JT. Hoveyda AH. Angew. Chem. Int. Ed. 2001; 40: 4251
    • 25a Lin YA. Chalker JM. Davis BG. ChemBioChem 2009; 10: 959
    • 25b Burtscher D. Grela K. Angew. Chem. Int. Ed. 2009; 48: 442
  • 26 All these metal–carbene complexes are indeed precatalysts or initiators rather than catalysts because they are not recovered unchanged at the end of the process. As the term ‘catalyst’ is generally accepted in the literature, we have opted to use this term in this review.
  • 27 For an excellent review about the evolution of catalyst design, see: Hoveyda AH. J. Org. Chem. 2014; 79: 4763

    • Selected reviews on applications of the metathesis reactions in total synthesis:
    • 28a Ivin KJ. J. Mol. Catal. A: Chem. 1998; 133: 1
    • 28b Prunet J. Angew. Chem. Int. Ed. 2003; 42: 2826
    • 28c Schrock RR. Hoveyda AH. Angew. Chem. Int. Ed. 2003; 42: 4592
    • 28d Mulzer J. Öhler E. Top. Organomet. Chem. 2004; 13: 269
    • 28e Rouge dos Santos A. Kaiser CR. Quim. Nova 2008; 31: 655
    • 28f Hoveyda AH. Malcolmson SJ. Meek SJ. Zhugralin AR. Angew. Chem. Int. Ed. 2010; 49: 34
    • 28g Fürstner A. Chem. Commun. 2011; 47: 6505
    • 28h Lei X. Li H. Top. Curr. Chem. 2012; 327: 163
    • 28i Bose S. Ghosh S. Proc. Indian Natl. Sci. Acad. 2014; 80: 37
  • 29 Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
  • 30 Gradillas A. Pérez-Castells J. Angew. Chem. Int. Ed. 2006; 45: 6086
  • 31 Prunet J. Eur. J. Org. Chem. 2011; 3634
  • 32 Vanderwal CD. Atwood BR. Aldrichimica Acta 2017; 50: 17
  • 33 Metathesis in Natural Product Synthesis . Cossy J. Arseniyadis S. Meyer C. Wiley-VCH; Weinheim: 2010

    • Selected reviews on metathesis reactions in synthesis of specific types of natural products:
    • 34a Mulzer J. Öhler E. Enev VS. Hanbauer M. Adv. Synth. Catal. 2002; 344: 573
    • 34b Felpin F.-X. Lebreton J. Eur. J. Org. Chem. 2003; 3693
    • 34c Mutlak H. Hassan A. Chem. Commun. 2010; 46: 9100
    • 34d Morzycki JW. Steroids 2011; 76: 949
    • 34e Demonceau A. Dragutan I. Dragutan V. Le Gendre P. Curr. Org. Synth. 2012; 9: 779
    • 34f Bajwa N. Jennings MP. Strategies Tactics Org. Synth. 2012; 8: 153
    • 34g Yu X. Sun D. Molecules 2013; 18: 6230
    • 34h Nguyen TV. Hartmann JM. Enders D. Synthesis 2013; 45: 845
    • 34i Lazarski KE. Moritz BJ. Thomson RJ. Angew. Chem. Int. Ed. 2014; 53: 10588
    • 34j Wojtkielewicz A. Curr. Org. Synth. 2013; 10: 43
    • 34k Fuwa H. Sasaki M. Bull. Chem. Soc. Jpn. 2016; 89: 1403
    • 34l Jacques R. Pal R. Parker NA. Sear CE. Smith PW. Ribaucourt A. Hodgson DM. Org. Biomol. Chem. 2016; 14: 5875
    • 35a Glaus F. Altmann K.-H. Angew. Chem. Int. Ed. 2012; 51: 3405
    • 35b Winter P. Hiller W. Christmann M. Angew. Chem. Int. Ed. 2012; 51: 3396
    • 35c Tang W. Prusov EV. Angew. Chem. Int. Ed. 2012; 51: 3401
  • 36 Tang W. Prusov EV. Org. Lett. 2012; 14: 4690
  • 37 Villa R. Mandel AL. Jones BD. La Clair JJ. Burkart MD. Org. Lett. 2012; 14: 5396
  • 38 Kusuma BR. Brandt GE. L. Blagg BS. J. Org. Lett. 2012; 14: 6242
  • 39 Oh H.-S. Kang H.-Y. J. Org. Chem. 2012; 77: 1125
  • 40 Ghosh AK. Cheng X. Bai R. Hamel E. Eur. J. Org. Chem. 2012; 4130
  • 41 Hara A. Morimoto R. Iwasaki Y. Saitoh T. Ishikawa Y. Nishiyama S. Angew. Chem. Int. Ed. 2012; 51: 9877
  • 42 Pawar AB. Prasad KR. Chem. Eur. J. 2012; 18: 15202
  • 43 Becker J. Butt L. von Kiedrowski V. Mischler E. Quentin F. Hiersemann M. Org. Lett. 2013; 15: 5982
  • 44 Fuwa H. Ishigai K. Hashizume K. Sasaki M. J. Am. Chem. Soc. 2012; 134: 11984
  • 45 Kondoh A. Arlt A. Gabor B. Fürstner A. Chem. Eur. J. 2013; 19: 7731
  • 46 Del Valle DJ. Krische MJ. J. Am. Chem. Soc. 2013; 135: 10986
  • 47 Fuwa H. Yamagata N. Saito A. Sasaki M. Org. Lett. 2013; 15: 1630
  • 48 Takada A. Uda K. Ohtani T. Tsukamoto S. Takahashi D. Toshima K. J. Antibiot. 2013; 66: 155
  • 49 Terayama N. Yasui E. Mizukami M. Miyashita M. Nagumo S. Org. Lett. 2014; 16: 2794
  • 50 Saidhareddy P. Ajay S. Shaw AK. RSC Adv. 2014; 4: 4253
  • 51 Kanoh N. Kawamata A. Itagaki T. Miyazaki Y. Yahata K. Kwon E. Iwabuchi Y. Org. Lett. 2014; 16: 5216
    • 52a Hallside MS. Brzozowski RS. Wuest WM. Phillips AJ. Org. Lett. 2014; 16: 1148
    • 52b Kuilya TK. Goswami RK. Org. Lett. 2017; 19: 2366
  • 53 Chatterjee S. Guchhait S. Goswami RK. J. Org. Chem. 2014; 79: 7689
  • 54 Fujiwara K. Suzuki Y. Koseki N. Aki Y.-i. Kikuchi Y. Murata S.-i. Yamamoto F. Kawamura M. Norikura T. Matsue H. Murai A. Katoono R. Kawai H. Suzuki T. Angew. Chem. Int. Ed. 2014; 53: 780
    • 55a Bali AK. Sunnam SK. Prasad KR. Org. Lett. 2014; 16: 4001
    • 55b Sharma BM. Gontala A. Kumar P. Eur. J. Org. Chem. 2016; 1215
  • 56 Pradhan TR. Das PP. Mohapatra DK. Synthesis 2014; 46: 1177
  • 57 Kumar SM. Prasad KR. Chem. Asian J. 2014; 9: 3431
  • 58 Ohba K. Nakata M. Org. Lett. 2015; 17: 2890
    • 59a Kaufmann E. Hattori H. Miyatake-Ondozabal H. Gademann K. Org. Lett. 2015; 17: 3514
    • 59b Miyatake-Ondozabal H. Kaufmann E. Gademann K. Angew. Chem. Int. Ed. 2015; 54: 1933
    • 60a Li H. Xie H. Zhang Z. Xu Y. Lu J. Gao L. Song Z. Chem. Commun. 2015; 51: 8484
    • 60b Zhang Z. Xie H. Li H. Gao L. Song Z. Org. Lett. 2015; 17: 4706
  • 61 Yu M. Schrock RR. Hoveyda AH. Angew. Chem. Int. Ed. 2015; 54: 215
  • 62 Suzuki T. Fujimura M. Fujita K. Kobayashi S. Tetrahedron 2017; 73: 3652
  • 63 Sakamoto K. Hakamata A. Tsuda M. Fuwa H. Angew. Chem. Int. Ed. 2018; 57: 3801
  • 64 Jakubec P. Hawkins A. Felzmann W. Dixon DJ. J. Am. Chem. Soc. 2012; 134: 17482
  • 65 Miura Y. Hayashi N. Yokoshima S. Fukuyama T. J. Am. Chem. Soc. 2012; 134: 11995
  • 66 Chausset-Boissaire L. Árvai R. Cumming GR. Guénée L. Kündig EP. Org. Biomol. Chem. 2012; 10: 6473
  • 67 Pfeiffer B. Speck-Gisler S. Barandun L. Senft U. de Groot C. Lehmann I. Ganci W. Gertsch J. Altmann K.-H. J. Org. Chem. 2013; 78: 2553
  • 68 Mahipal B. Singh A. Ummanni R. Chandrasekhar S. RSC Adv. 2013; 3: 15917
  • 69 Toya H. Satoh T. Okano K. Takasu K. Ihara M. Takahashi A. Tanaka H. Tokuyama H. Tetrahedron 2014; 70: 8129
  • 70 Rensing DT. Uppal S. Blumer KJ. Moeller KD. Org. Lett. 2015; 17: 2270
  • 71 Huang J. Wang Z. Org. Lett. 2016; 18: 4702
  • 72 Clark JS. Xu C. Angew. Chem. Int. Ed. 2016; 55: 4332
  • 73 Xu B. Li G. Li J. Shi Y. Org. Lett. 2016; 18: 2028
  • 74 Reddy DP. Zhang N. Yu Z. Wang Z. He Y. J. Org. Chem. 2017; 82: 11262
  • 75 Revu O. Prasad KR. J. Org. Chem. 2017; 82: 438
  • 76 Toelle N. Weinstabl H. Gaich T. Mulzer J. Angew. Chem. Int. Ed. 2014; 53: 3859
  • 77 Zhu L. Liu Y. Ma R. Tong R. Angew. Chem. Int. Ed. 2015; 54: 627
  • 78 Frichert A. Jones PG. Lindel T. Angew. Chem. Int. Ed. 2016; 55: 2916
  • 79 Zhang P.-P. Yan Z.-M. Li Y.-H. Gong J.-X. Yang Z. J. Am. Chem. Soc. 2017; 139: 13989
  • 80 Matsuzawa A. Shiraiwa J. Kasamatsu A. Sugita K. Org. Lett. 2018; 20: 1031
    • 81a Wadsworth AD. Furkert DP. Sperry J. Brimble MA. Org. Lett. 2012; 14: 5374
    • 81b Wadsworth AD. Furkert DP. Brimble MA. J. Org. Chem. 2014; 79: 11179
  • 82 Schafroth MA. Zuccarello G. Krautwald S. Sarlah D. Carreira EM. Angew. Chem. Int. Ed. 2014; 53: 13898
    • 83a Trost BM. Dogra K. Org. Lett. 2007; 9: 861
    • 83b Song Y. Hwang S. Gong P. Kim D. Kim S. Org. Lett. 2008; 10: 269
  • 84 Yang J. Knueppel D. Cheng B. Mans D. Martin SF. Org. Lett. 2015; 17: 114
  • 85 Chapman LM. Beck JC. Wu L. Reisman SE. J. Am. Chem. Soc. 2016; 138: 9803
  • 86 Takamura H. Kikuchi T. Endo N. Fukuda Y. Kadota I. Org. Lett. 2016; 18: 2110
  • 87 Chuang KV. Xu C. Reisman SE. Science (Washington, D. C.) 2016; 353: 912
    • 88a Nagatomo M. Koshimizu M. Masuda K. Tabuchi T. Urabe D. Inoue M. J. Am. Chem. Soc. 2014; 136: 5916
    • 88b Koshimizu M. Nagatomo M. Inoue M. Angew. Chem. Int. Ed. 2016; 55: 2493
    • 88c Masuda K. Koshimizu M. Nagatomo M. Inoue M. Chem. Eur. J. 2016; 22: 230

      For reviews on catalytic enantioselective olefin metathesis, see:
    • 89a ref. 27.
    • 89b Montgomery TP. Johns AM. Grubbs RH. Catalysts 2017; 7: 87
  • 90 Kang T. White KL. Mann TJ. Hoveyda AH. Movassaghi M. Angew. Chem. Int. Ed. 2017; 56: 13857
  • 91 Cheng B. Sunderhaus JD. Martin SF. Tetrahedron 2015; 71: 7323
  • 92 Vincent G. Mansfield DJ. Vors J.-P. Ciufolini MA. Org. Lett. 2006; 8: 2791
  • 93 Lu H.-H. Hinkelmann B. Tautz T. Li J. Sasse F. Franke R. Kalesse M. Org. Biomol. Chem. 2015; 13: 8029
  • 94 Canterbury DP. Scott KE. N. Kubo O. Jansen R. Cleveland JL. Micalizio GC. ACS Med. Chem. Lett. 2013; 4: 1244
  • 95 Trost BM. Yang H. Dong G. Chem. Eur. J. 2011; 17: 9789
  • 96 Dumeunier R. Gregson T. MacCormick S. Omori H. Thomas EJ. Org. Biomol. Chem. 2017; 15: 2768
  • 97 Kim B. Sohn T.-i. Kim D. Paton RS. Chem. Eur. J. 2018; 24: 2634
  • 98 Fujiwara K. Top. Heterocycl. Chem. 2006; 5: 97
  • 99 Hansen EC. Lee D. Org. Lett. 2004; 6: 2035
  • 100 Monfette S. Eyholzer M. Roberge DM. Fogg DE. Chem. Eur. J. 2010; 16: 11720
  • 101 Skowerski K. Czarnocki SJ. Knapkiewicz P. ChemSusChem 2014; 7: 536
  • 102 Morin E. Raymond M. Dubart A. Collins SK. Org. Lett. 2017; 19: 2889
  • 103 Chen R. Li L. Lin N. Zhou R. Hua Y. Deng H. Zhang Y. Org. Lett. 2018; 20: 1477
  • 104 Weiß C. Bogner T. Sammet B. Sewald N. Beilstein J. Org. Chem. 2012; 8: 2060
  • 105 Yadav JS. Das SK. Sabitha G. J. Org. Chem. 2012; 77: 11109
  • 106 Persich P. Kerschbaumer J. Helling S. Hildmann B. Wibbeling B. Haufe G. Org. Lett. 2012; 14: 5628
  • 107 Reddy CR. Jithender E. Prasad KR. J. Org. Chem. 2013; 78: 4251
  • 108 Yajima A. Kawajiri A. Mori A. Katsuta R. Nukada T. Tetrahedron Lett. 2014; 55: 4350
  • 109 Konda S. Bhaskar K. Nagarapu L. Akkewar DM. Tetrahedron Lett. 2014; 55: 3087
  • 110 Davies SG. Lee JA. Roberts PM. Stonehouse JP. Thomson JE. J. Org. Chem. 2012; 77: 7028
  • 111 Dayaker G. Krishna PR. Helv. Chim. Acta 2014; 97: 868
  • 112 Gao Y. Shan Q. Liu J. Wang L. Du Y. Org. Biomol. Chem. 2014; 12: 2071
  • 113 Kamal A. Balakrishna M. Reddy PV. Rahim A. Tetrahedron: Asymmetry 2014; 25: 148
  • 114 Suzuki A. Sasaki M. Nakagishi T. Ueda T. Hoshiya N. Uenishi J. Org. Lett. 2016; 18: 2248
  • 115 Srinivas E. Dutta P. Ganganna B. Alghamdi AA. Yadav JS. Synthesis 2016; 48: 1561
  • 116 von Kiedrowski V. Quentin F. Hiersemann M. Org. Lett. 2017; 19: 4391
  • 117 Reddy GS. Padhi B. Bharath Y. Mohapatra DK. Org. Lett. 2017; 19: 6506
  • 118 Cheng H. Zhang Z. Yao H. Zhang W. Yu J. Tong R. Angew. Chem. Int. Ed. 2017; 56: 9096
  • 119 Gregg C. Gunawan C. Ng AW. Y. Wimala S. Wickremasinghe S. Rizzacasa MA. Org. Lett. 2013; 15: 516
  • 120 Paterson I. Findlay AD. Noti C. Chem. Asian J. 2009; 4: 594
  • 121 Kumar DA. Meshram HM. Synth. Commun. 2013; 43: 1145
  • 122 Ghosh AK. Veitschegger AM. Sheri VR. Effenberger KA. Prichard BE. Jurica MS. Org. Lett. 2014; 16: 6200
    • 123a Ghosh AK. Chen Z.-H. Org. Lett. 2013; 15: 5088
    • 123b Ghosh AK. Chen Z.-H. Effenberger KA. Jurica MS. J. Org. Chem. 2014; 79: 5697
  • 124 Kita M. Oka H. Usui A. Ishitsuka T. Mogi Y. Watanabe H. Tsunoda M. Kigoshi H. Angew. Chem. Int. Ed. 2015; 54: 14174
  • 125 Glaus F. Altmann K.-H. Angew. Chem. Int. Ed. 2015; 54: 1937
  • 126 Erb W. Grassot J.-M. Linder D. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2015; 54: 1929
  • 127 Jeanne-Julien L. Masson G. Astier E. Genta-Jouve G. Servajean V. Beau J.-M. Norsikian S. Roulland E. Org. Lett. 2017; 19: 4006
    • 128a Takahashi S. Satoh D. Hayashi M. Takahashi K. Yamaguchi K. Nakamura T. Koshino H. J. Org. Chem. 2016; 81: 11222
    • 128b Takahashi S. Hongo Y. Tsukagoshi Y. Koshino H. Org. Lett. 2008; 10: 4223
  • 129 Alfonso D. Colman-Saizarbitoria T. Zhao G.-X. Shi G. Ye Q. Schwedler JT. McLaughlin JL. Tetrahedron 1996; 52: 4215
  • 130 Cheng-Sánchez I. García-Ruiz C. Guerrero-Vásquez GA. Sarabia F. J. Org. Chem. 2017; 82: 4744
  • 131 Shimada J. Kwon HJ. Sawamura M. Schreiber SL. Chem. Biol. 1995; 2: 517
  • 132 García-Ruiz C. Cheng-Sánchez I. Sarabia F. Org. Lett. 2015; 17: 5558
  • 133 Bisterfeld C. Holec C. Böse D. Marx P. Pietruszka J. J. Nat. Prod. 2017; 80: 1563
  • 134 Fu GC. Grubbs RH. J. Am. Chem. Soc. 1992; 114: 5426
  • 135 Cusak A. Chem. Eur. J. 2012; 18: 5800
  • 136 Matsui R. Seto K. Fujita K. Suzuki T. Nakazaki A. Kobayashi S. Angew. Chem. Int. Ed. 2010; 49: 10068
  • 137 Hoye TR. Jeon J. Kopel LC. Ryba TD. Tennakoon MA. Wang Y. Angew. Chem. Int. Ed. 2010; 49: 6151
  • 138 Evans PA. Cui J. Gharpure SJ. Polosukhin A. Zhang HR. J. Am. Chem. Soc. 2003; 125: 14702
  • 139 Chowdhury PS. Kumar P. Eur. J. Org. Chem. 2013; 4586
  • 140 Kumar TV. Shankaraiah G. Babu KS. Rao JM. Tetrahedron Lett. 2013; 54: 1397
  • 141 Kumar TV. Reddy GV. Babu KS. Rao JM. Tetrahedron: Asymmetry 2013; 24: 594
  • 142 Volchkov I. Lee D. J. Am. Chem. Soc. 2013; 135: 5324
    • 143a Jung J.-C. Kache R. Vines KK. Zheng Y.-S. Bijoy P. Valluri M. Avery MA. J. Org. Chem. 2004; 69: 9269
    • 143b Prantz K. Mulzer J. Angew. Chem. Int. Ed. 2009; 48: 5030
  • 144 Gaich T. Mulzer J. Org. Lett. 2005; 7: 1311
  • 145 Wang J. Sun B.-F. Cui K. Lin G.-Q. Org. Lett. 2012; 14: 6354
  • 146 Clark JS. Romiti F. Angew. Chem. Int. Ed. 2013; 52: 10072
  • 147 Schmidt B. Audörsch S. J. Org. Chem. 2017; 82: 1743
  • 148 Liu C.-W. Yeh T.-C. Chen C.-H. Yu C.-C. Chen C.-S. Hou D.-R. Guh J.-H. Tetrahedron 2013; 69: 2971
  • 149 Jayasinghe S. Venukadasula PK. M. Hanson PR. Org. Lett. 2014; 16: 122
  • 150 Bodugam M. Javed S. Ganguly A. Torres J. Hanson PR. Org. Lett. 2016; 18: 516
  • 151 Hoye TR. Jeffrey CS. Tennakoon MA. Wang J. Zhao H. J. Am. Chem. Soc. 2004; 126: 10210
  • 152 Wang X. Bowman EJ. Bowman BJ. Porco JA. Jr. Angew. Chem. Int. Ed. 2004; 43: 3601
  • 153 For a review on RRCM, see: Wallace DJ. Angew. Chem. Int. Ed. 2005; 44: 1912
  • 154 Fujioka K. Yokoe H. Yoshida M. Shishido K. Org. Lett. 2012; 14: 244
  • 155 Arndt H.-D. Rizzo S. Nöcker C. Wakchaure VN. Milroy L.-G. Bieker V. Calderon A. Tran TT. N. Brand S. Dehmelt L. Waldmann H. Chem. Eur. J. 2015; 21: 5311
  • 156 Wang C. Yu M. Kyle AF. Jakubec P. Dixon DJ. Schrock RR. Hoveyda AH. Chem.–Eur. J. 2013; 19: 2726
  • 157 Herbert MB. Suslick BA. Liu P. Zou L. Dornan PK. Houk KN. Grubbs RH. Organometallics 2015; 34: 2858
    • 158a Johns AM. Ahmed TS. Jackson BW. Grubbs RH. Pederson RL. Org. Lett. 2016; 18: 772
    • 158b Ahmed TS. Grubbs RH. J. Am. Chem. Soc. 2017; 139: 1532
    • 159a Montgomery TP. Ahmed TS. Grubbs RH. Angew. Chem. Int. Ed. 2017; 56: 11024
    • 159b Montgomery TP. Grandner JM. Houk KN. Grubbs RH. Organometallics 2015; 36: 3940
  • 160 Hartung J. Dornan PK. Grubbs RH. J. Am. Chem. Soc. 2014; 136: 13029
    • 161a Herbert MB. Grubbs RH. Angew. Chem. Int. Ed. 2015; 54: 5018
    • 161b Werrel S. Walker JC. L. Donohoe TJ. Tetrahedron Lett. 2015; 56: 5261
  • 162 Mangold SL. Grubbs RH. Chem. Sci. 2015; 6: 4561
    • 163a Mangold SL. O’Leary DJ. Grubbs RH. J. Am. Chem. Soc. 2014; 136: 12469
    • 163b Dornan PK. Wickens ZK. Grubbs RH. Angew. Chem. Int. Ed. 2015; 54: 7134
    • 163c Luo S.-X. Cannon JS. Taylor BL. H. Engle KM. Houk KN. Grubbs RH. J. Am. Chem. Soc. 2016; 138: 14039
    • 163d Dornan PK. Lee D. Grubbs RH. J. Am. Chem. Soc. 2016; 138: 6372
    • 163e de Léséleuc M. Godin E. Parisien-Collette S. Lévesque A. Collins SK. J. Org. Chem. 2016; 81: 6750
    • 163f Xu C. Shen X. Hoveyda AH. J. Am. Chem. Soc. 2017; 139: 10919
  • 164 Speed AW. H. Mann TJ. O’Brien RV. Schrock RR. Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 16136
  • 165 For a recent review about the use of metathesis cascade reactions in synthesis of natural products, see: Han J.-C. Li C.-C. Synlett 2015; 26: 1289
  • 166 Lee H.-Y. Lee S.-S. Kim HS. Lee KM. Eur. J. Org. Chem. 2012; 4192
  • 167 Shoji M. Akiyama N. Tsubone K. Lash LL. Sanders JM. Swanson GT. Sakai R. Shimamoto K. Oikawa M. Sasaki M. J. Org. Chem. 2006; 71: 4227
  • 168 Horeischi F. Guttroff C. Plietker B. Chem. Commun. 2015; 51: 2259
  • 169 Horeischi F. Biber N. Plietker B. J. Am. Chem. Soc. 2014; 136: 4026
  • 170 Takao K.-i. Nanamiya R. Fukushima Y. Namba A. Yoshida K. Tadano K.-i. Org. Lett. 2013; 15: 5582
    • 171a Takao K.-i. Nemoto R. Mori K. Namba A. Yoshida K. Ogura A. Chem. Eur. J. 2017; 23: 3828
    • 171b Takao K.-i. Mori K. Kasuga K. Nanamiya R. Namba A. Fukushima Y. Nemoto R. Mogi T. Yasui H. Ogura A. Yoshida K. Tadano K.-i. J. Org. Chem. 2018; 83: 7060
  • 172 Waldeck AR. Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 4470
  • 173 Kammari BR. Bejjanki NK. Kommu N. Tetrahedron: Asymmetry 2015; 26: 296
  • 174 Calder ED. D. McGonagle FI. Harkiss AH. McGonagle GA. Sutherland A. J. Org. Chem. 2014; 79: 7633
  • 175 Grafton MW. Farrugia LJ. Sutherland A. J. Org. Chem. 2013; 78: 7199

    • Selected reviews of enyne metathesis in synthesis of natural products:
    • 176a Mori M. Materials 2010; 3: 2087
    • 176b Mori M. Adv. Synth. Catal. 2007; 349: 121
    • 176c Dragutan I. Dragutan V. Demonceau A. Delaude L. Curr. Org. Chem. 2013; 17: 2678
  • 177 A general review about enyne metathesis: Diver ST. Giessert AJ. Chem. Rev. 2004; 104: 1317
  • 178 Gao X. Woo SW. Krische MJ. J. Am. Chem. Soc. 2013; 135: 4223
  • 179 Jecs E. Diver ST. Org. Lett. 2015; 17: 3510
  • 180 Williams DR. Myers BJ. Mi L. Org. Lett. 2000; 2: 945
  • 181 Hwang M.-h. Han S.-J. Lee D.-H. Org. Lett. 2013; 15: 3318
    • 182a Li J. Lee D. Eur. J. Org. Chem. 2011; 4269
    • 182b Kotha S. Meshram M. Tiwari A. Chem. Soc. Rev. 2009; 38: 2065
    • 182c Kaliappan KP. Lett. Org. Chem. 2005; 2: 678
  • 183 Lee J. Parker KA. Org. Lett. 2012; 14: 2682
  • 184 Molawi K. Delpont N. Echavarren AM. Angew. Chem. Int. Ed. 2010; 49: 3517
    • 185a Paquette LA. Sauer DR. Cleary DG. Kinsella MA. Blackwell CM. Anderson LG. J. Am. Chem. Soc. 1992; 114: 7375
    • 185b Caussanel F. Wang K. Ramachandran SA. Deslongchamps P. J. Org. Chem. 2006; 71: 7370
  • 186 Wang Y. Jäger A. Gruner M. Lübken T. Metz P. Angew. Chem. Int. Ed. 2017; 56: 15861
  • 187 Chu S. Münster N. Balan T. Smith MD. Angew. Chem. Int. Ed. 2016; 55: 14306
  • 188 Kress S. Weckesser J. Schulz SR. Blechert S. Eur. J. Org. Chem. 2013; 1346
  • 189 Wei H. Qiao C. Liu G. Yang Z. Li C.-c. Angew. Chem. Int. Ed. 2013; 52: 620
  • 190 Honda T. Namiki H. Kaneda K. Mizutani H. Org. Lett. 2004; 6: 87
  • 191 Magnus P. Rodríguez-López J. Mulholland K. Matthews I. Tetrahedron 1993; 49: 8059
  • 192 Kashinath K. Jadhav PD. Reddy DS. Org. Biomol. Chem. 2014; 12: 4098
  • 193 Mortreux A. Blanchard M. J. Chem. Soc., Chem. Commun. 1974; 786
  • 194 Schrock RR. Clark DN. Sancho J. Wengrovius JH. Rocklage SM. Pedersen SF. Organometallics 1982; 1: 1645
  • 195 Fürstner A. Mathes C. Lehmann CW. J. Am. Chem. Soc. 1999; 121: 9453
  • 196 Fürstner A. Guth O. Rumbo A. Seidel G. J. Am. Chem. Soc. 1999; 121: 11108
    • 197a Schaubach S. Gebauer K. Ungeheuer F. Hoffmeister L. Ilg MK. Wirtz C. Fürstner A. Chem. Eur. J. 2016; 22: 8494; and references therein
    • 197b Wu X. Tamm M. Beilstein J. Org. Chem. 2011; 7: 82
  • 198 Fürstner A. Mathes C. Lehmann CW. Chem. Eur. J. 2001; 7: 5299

    • Selected reviews on alkyne metathesis:
    • 199a Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 8587
    • 199b Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 2794
    • 199c Zhang W. Moore JS. Adv. Synth. Catal. 2007; 349: 93
    • 199d Fürstner A. Davies PW. Chem. Commun. 2005; 2307
  • 200 Micoine K. Persich P. Llaveria J. Lam M.-H. Maderna A. Loganzo F. Fürstner A. Chem. Eur. J. 2013; 19: 7370
    • 201a Willwacher J. Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 4217
    • 201b Willwacher J. Heggen B. Wirtz C. Thiel W. Fürstner A. Chem. Eur. J. 2015; 21: 10416
    • 202a Valot G. Regens CS. O’Malley DP. Godineau E. Takikawa H. Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 9534
    • 202b Valot G. Mailhol D. Regens CS. O’Malley DP. Godineau E. Takikawa H. Phillipps P. Fürstner A. Chem. Eur. J. 2015; 21: 2398
  • 203 Fuchs M. Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 3978
  • 204 Mailhol D. Willwacher J. Kausch-Busies N. Rubitski EE. Sobol Z. Schuler M. Lam M.-H. Musto S. Loganzo F. Maderna A. Fürstner A. J. Am. Chem. Soc. 2014; 136: 15719
  • 205 Lehr K. Schulthoff S. Ueda Y. Mariz R. Leseurre L. Gabor B. Fürstner A. Chem. Eur. J. 2015; 21: 219
  • 206 Hoffmeister L. Fukuda T. Pototschnig G. Fürstner A. Chem. Eur. J. 2015; 21: 4529
  • 207 Neuhaus CM. Liniger M. Stieger M. Altmann K.-H. Angew. Chem. Int. Ed. 2013; 52: 5866
  • 208 Fouché M. Rooney L. Barrett AG. M. J. Org. Chem. 2012; 77: 3060
  • 209 Guo L.-D. Huang X.-Z. Luo S.-P. Cao W.-S. Ruan Y.-P. Ye J.-L. Huang P.-Q. Angew. Chem. Int. Ed. 2016; 55: 4064
  • 210 Rummelt SM. Preindl J. Sommer H. Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 6241
  • 211 Kwon Y. Schulthoff S. Dao QM. Wirtz C. Fürstner A. Chem. Eur. J. 2018; 24: 109
  • 212 Meng Z. Souillart L. Monks B. Huwyler N. Herrmann J. Müller R. Fürstner A. J. Org. Chem. 2018; 83: in press; DOI: 10.1021/acs.joc.7b02871
  • 213 Ahlers A. de Haro T. Gabor B. Fürstner A. Angew. Chem. Int. Ed. 2016; 55: 1406
  • 214 Brewitz L. Llaveria J. Yada A. Fürstner A. Chem. Eur. J. 2013; 19: 4532
  • 215 Hoffmeister L. Persich P. Fürstner A. Chem. Eur. J. 2014; 20: 4396
  • 216 Gebauer K. Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 6393
  • 217 Fürstner A. Acc. Chem. Res. 2014; 47: 925
  • 218 Woo SK. Lee A. J. Am. Chem. Soc. 2010; 132: 4564
  • 219 Magauer T. Martin HJ. Mulzer J. Chem. Eur. J. 2010; 16: 507
  • 220 Ungeheuer F. Fürstner A. Chem. Eur. J. 2015; 21: 11387
  • 221 Wang Y. Liu Q.-F. Xue J.-J. Zhou Y. Yu H.-C. Yang S.-P. Zhang B. Zuo J.-P. Li Y. Yue J.-M. Org. Lett. 2014; 16: 2062
  • 222 For a recent representative example see: Ralston KJ. Ramstadius HC. Brewster RC. Niblock HS. Hulme AS. Angew. Chem. Int. Ed. 2015; 54: 7086
  • 223 For a recent representative example see: Guy A. Oger C. Heppekausen J. Signorini C. De Felice C. Fürstner A. Durand T. Galano J.-M. Chem. Eur. J. 2014; 20: 6374
  • 224 Zhang W. Moore JS. Macromolecules 2004; 37: 3973 ; and references therein