Synlett 2018; 29(17): 2238-2250
DOI: 10.1055/s-0037-1610204
account
© Georg Thieme Verlag Stuttgart · New York

Radical-type Reactions Controlled by Cobalt: From Carbene Radical Reactivity to the Catalytic Intermediacy of Reactive o-Quinodimethanes

Colet te Grotenhuis
Homogeneous, Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands   Email: [email protected]
,
Homogeneous, Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands   Email: [email protected]
› Author Affiliations
Financial support from the Netherlands Organization for Scientific Research (NWO-CW VICI project 016.122.613) and the University of Amsterdam (Research Priority Area Sustainable Chemistry) is gratefully acknowledged.
Further Information

Publication History

Received: 17 May 2018

Accepted: 05 June 2018

Publication Date:
19 July 2018 (online)


Dedicated to Professor Michael P. Doyle, in recognition of hisexcellent contributions to the field of metallo-carbene chemistry.

Abstract

In this account, we summarize our recent efforts in the fields of ‘open-shell organometallic chemistry’ and ‘metalloradical catalysis’. We focus in particular on the use of so-called ‘carbene radicals’ for the synthesis of a variety of useful synthons for organic chemistry. We further show that unexpected reactivity arises from catalytic synthesis of unusual o-quinone methide and o-quinodimethane intermediates that undergo subsequent rearrangements to uncommon products.

1 Introduction

2 General (Fischer-Type) Carbene and Nitrene Reactivity and Their Relation to Carbene and Nitrene Radical Reactivity

3 Carbene and Nitrene (Radical) Precursors

4 Formation and Intrinsic Radical-Type Reactivity of Carbene and Nitrene Radicals

5 Types of Cobalt Catalysts Used in Reactions Involving Carbene and Nitrene Radicals

6 Applications of Cobalt-Catalyzed Ring-Closure Reactions via ­Carbene Radicals

7 Intermediacy of o-Quinone Methide and o-Quidodimethanes in Carbene Ring-Closing Reactions

8 Conclusion

 
  • References

    • 1a de Bruin B. Peters TP. J. Thewissen S. Blok AN. J. Wilting JB. M. de Gelder R. Smits JM. M. Gal AW. Angew. Chem. Int. Ed. 2002; 41: 2135
    • 1b de Bruin B. Thewissen S. Yuen T.-W. Peters TP. J. Smits JM. M. Gal AW. Organometallics 2002; 21: 4312
    • 1c Hetterscheid DG. H. de Bruin B. Smits JM. M. Gal AW. Organometallics 2003; 22: 3022
    • 1d Hetterscheid DG. H. Smits JM. M. de Bruin B. Organometallics 2004; 23: 4236
    • 1e Hetterscheid DG. H. Kaiser J. Reijerse E. Peters TP. J. Thewissen S. Blok AN. J. Smits JM. M. de Gelder R. de Bruin B. J. Am. Chem. Soc. 2005; 127: 1895
    • 1f Hetterscheid DG. H. Bens M. de Bruin B. Dalton Trans. 2005; 5: 979
    • 1g de Bruin B. Hetterscheid DG. H. Eur. J. Inorg. Chem. 2007; 211
    • 1h Hetterscheid DG. H. Klop M. Kicken RJ. N. A. M. Smits JM. M. Reijerse EJ. de Bruin B. Chem. Eur. J. 2007; 13: 3386
    • 1i Chan K.-S. Li XZ. Dzik WI. de Bruin B. J. Am. Chem. Soc. 2008; 130: 2051
    • 1j Dzik WI. Reek J. N 2008; 14: 7594
    • 2a Dzik WI. Xu X. Zhang XP. Reek JN. H. de Bruin B. J. Am. Chem. Soc. 2010; 132: 10891
    • 2b Lu H. Dzik WI. Xu X. Wojtas L. de Bruin B. Zhang XP. J. Am. Chem. Soc. 2011; 133: 8518
    • 2c Lyaskovskyy V. Olivos Suárez AI. Lu H. Jiang H. Zhang XP. de Bruin B. J. Am. Chem. Soc. 2011; 133: 12264
  • 3 Metalloradicals are metal complexes bearing exactly one unpaired electron revealing discrete radical-type reactivity.
    • 4a Lyaskovskyy V. de Bruin B. ACS Catal. 2012; 2: 270
    • 4b Dzik WI. Zhang XP. de Bruin B. Inorg. Chem. 2011; 50: 9896
    • 4c Kuijpers PF. van der Vlugt JI. Schneider S. de Bruin B. Chem. Eur. J. 2017; 23: 13819
    • 4d Huang L. Chen Y. Gao GY. Zhang XP. J. Org. Chem. 2003; 68: 8179
    • 4e Zhu S. Ruppel JV. Lu H. Wojtas L. Zhang XP. J. Am. Chem. Soc. 2008; 130: 5042
    • 4f Intrieri D. Caselli A. Gallo E. Eur. J. Inorg. Chem. 2011; 5071
    • 4g Chirila A. Gopal Das B. Paul ND. de Bruin B. ChemCatChem 2017; 9: 1413
    • 4h Goswami M. de Bruin B. Dzik WI. Chem. Commun. 2017; 53: 4382
    • 4i Paul ND. Mandal S. Otte M. Cui X. Zhang XP. de Bruin B. J. Am. Chem. Soc. 2014; 136: 1090
    • 4j Majumdar N. Paul ND. Mandal S. de Bruin B. Wulff WD. ACS Catal. 2015; 5: 2329
    • 4k Cui X. Xu X. Wojtas L. Kim MM. Zhang XP. J. Am. Chem. Soc. 2012; 134: 19981
    • 4l Das BG. Chirila A. Tromp M. Reek JN. H. de Bruin B. J. Am. Chem. Soc. 2016; 138: 8968
    • 4m Paul ND. Chirila A. Lu H. Zhang XP. de Bruin B. Chem. Eur. J. 2013; 19: 12953
    • 4n Jin L.-M. Lu H. Cui Y. Lizardi CL. Arzua TN. Wojtas L. Cui X. Zhang XP. Chem. Sci. 2014; 5: 2422
    • 4o Lu H. Tao J. Jones JE. Wojtas L. Zhang XP. Org. Lett. 2010; 12: 1248
  • 5 Kuijpers PF. Tiekink MJ. Breukelaar WB. Broere DL. J. van Leest NP. van der Vlugt JI. Reek JN. H. de Bruin B. Chem. Eur. J. 2017; 23: 7945
  • 6 Goswami M. Geuijen P. Reek JN. H. de Bruin B. Eur. J. Inorg. Chem. 2018; 617
    • 7a Doyle MP. Duffy R. Ratnikov M. Zhou L. Chem. Rev. 2010; 110: 704
    • 7b Goswami M. Lyaskovskyy V. Domingos SR. Buma WJ. Woutersen S. Troeppner O. Ivanović-Burmazović I. Lu H. Cui X. Zhang XP. Reijerse EJ. de Beer S. van Schooneveld MM. Pfaff FF. Ray K. de Bruin B. J. Am. Chem. Soc. 2015; 137: 5468
    • 7c Jia M. Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
    • 7d Davies HM. L. Manning JR. Nature 2008; 451: 417
    • 8a Luca OR. Crabtree RH. Chem. Soc. Rev. 2013; 42: 1440
    • 8b Paradine SM. Griffin JR. Zhao J. Petronico AL. Miller SM. Christina White M. Nat. Chem. 2015; 7: 987
    • 8c Bagchi V. Paraskevopoulou P. Das P. Chi L. Wang Q. Choudhury A. Mathieson JS. Cronin L. Pardue DB. Cundari TR. Mitrikas G. Sanakis Y. Stavropoulos P. J. Am. Chem. Soc. 2014; 136: 11362
    • 8d King ER. Hennessy ET. Betley TA. J. Am. Chem. Soc. 2011; 133: 4917
    • 8e Bagh B. Broere DL. J. Sinha V. Kuijpers PF. van Leest NP. de Bruin B. Demeshko S. Siegler MA. van der Vlugt JI. J. Am. Chem. Soc. 2017; 139: 5117
    • 9a Li Z. Capretto DA. Rahaman R. He C. Angew. Chem. Int. Ed. 2007; 46: 5184
    • 9b Chang JW. W. Chan PW. H. Angew. Chem. Int. Ed. 2008; 47: 1138
    • 9c Yang J. Weinberg R. Breslow R. Chem. Commun. 2000; 531
    • 9d Chan J. Baucom KD. Murry JA. J. Am. Chem. Soc. 2007; 129: 14106
    • 9e Liang C. Collet F. Robert-Peillard F. Müller P. Dodd RH. Dauban P. J. Am. Chem. Soc. 2008; 130: 343
    • 10a Albone DP. Aujla PS. Challenger S. Derrick AM. J. Org. Chem. 1998; 63: 9569
    • 10b Fructos MR. Trofimenko S. Díaz-Requejo MM. Pérez PJ. J. Am. Chem. Soc. 2006; 128: 11784
    • 10c Albone DP. Challenger S. Derrick AM. Fillery SM. Irwin JL. Parsons CM. Takada H. Taylor PC. Wilson DJ. Org. Biomol. Chem. 2005; 3: 107
  • 11 Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
    • 12a Fulton JR. Aggarwal VK. de Vicente J. Eur. J. Org. Chem. 2005; 1479
    • 12b Shao Z. Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 12c Xia Y. Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 13a Jones WM. Joines RC. Myers JA. Mitsuhashi T. Krajca KE. Waali EE. Davis TL. Turner AB. J. Am. Chem. Soc. 1973; 95: 826
    • 13b Doyle MP. Yan M. J. Org. Chem. 2002; 67: 602
  • 14 Olivos Suarez AI. Lyaskovskyy V. Reek JN. H. van der Vlugt JI. de Bruin B. Angew. Chem. Int. Ed. 2013; 52: 12510
    • 15a Che C.-M. Lo VK.-Y. Zhou C.-Y. Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
    • 15b Cozzi PG. Chem. Soc. Rev. 2004; 33: 410
    • 15c Crossley SW. M. Obradors C. Martinez RM. Shenvi RA. Chem. Rev. 2016; 116: 8912
  • 16 Weiss MC. Goedken VL. J. Am. Chem. Soc. 1976; 98: 3389
  • 17 Banerjee R. Biochemistry 2001; 40: 6191
    • 18a Ullrich V. Top. Curr. Chem 1979; 83: 67
    • 18b Sono M. Roach MP. Coulter ED. Dawson JH. Chem. Rev. 1996; 96: 2841
    • 18c Denisov IG. Makris TM. Sligar SG. Schlichting I. Chem. Rev. 2005; 105: 2253
    • 18d Ortiz de Montellano PR. Chem. Rev. 2010; 110: 932
    • 18e Bonnett R. Chem. Rev. 1963; 63: 573
    • 18f Brown KL. Chem. Rev. 2005; 105: 2075
  • 19 Cui X. Xu X. Jin L.-M. Wojtas L. Zhang XP. Chem. Sci. 2015; 6: 1219
  • 20 Penoni A. Wanke R. Tollari S. Gallo E. Musella D. Ragaini F. Demartin F. Cenini S. Eur. J. Inorg. Chem. 2003; 1452
    • 21a Zhu S. Perman JA. Zhang XP. Angew. Chem. Int. Ed. 2008; 47: 8460
    • 21b Cui X. Xu X. Lu H. Zhu S. Wojtas L. Zhang XP. J. Am. Chem. Soc. 2011; 133: 3304
    • 22a Pellissier H. Clavier H. Chem. Rev. 2014; 114: 2775
    • 22b Gupta KC. Sutar AK. Coord. Chem. Rev. 2008; 252: 1420
    • 22c Niimi T. Uchida T. Irie R. Katsuki T. Tetrahedron Lett. 2000; 41: 3647
    • 23a Chirila A. van Vliet KM. Paul ND. de Bruin B. Eur. J. Inorg. Chem. 2018; 2251
    • 23b Chirila A. Gopal Das B. Paul ND. de Bruin B. ChemCatChem 2017; 9: 1413
  • 24 Chirila A. Brands MB. de Bruin B. J. Catal. 2018; 361: 347
    • 25a Otte M. Kuijpers PF. Troeppner O. Ivanović-Burmazović I. Reek JN. H. de Bruin B. Chem. Eur. J. 2013; 19: 10170
    • 25b Otte M. Kuijpers PF. Troeppner O. Ivanović-Burmazović I. Reek JN. H. de Bruin B. Chem. Eur. J. 2014; 20: 4880
  • 26 Goswami M. de Bruin B. Dzik WI. Chem. Commun. 2017; 53: 4382
    • 27a Pathak TP. Sigman MS. J. Org. Chem. 2011; 76: 9210
    • 27b Willis NJ. Bray CD. Chem. Eur. J. 2012; 18: 9160
    • 27c Segura JL. Martín N. Chem. Rev. 1999; 99: 3199
  • 28 te Grotenhuis C. Das BG. Kuijpers PF. Hageman W. Trouwborst M. de Bruin B. Chem. Sci. 2017; 8: 8221
  • 29 te Grotenhuis C. van den Heuvel N. van der Vlugt JI. de Bruin B. Angew. Chem. Int. Ed. 2018; 57: 140
  • 30 Wang Y. Wen X. Cui X. Zhang XP. J. Am. Chem. Soc. 2018; 140: 4792