Synthesis 2018; 50(17): 3307-3321
DOI: 10.1055/s-0037-1610197
feature
© Georg Thieme Verlag Stuttgart · New York

One-Pot Conversion of Aldehydes and Ketones into 1-Substituted and 1,4-Disubstituted 1,3-Enynes

Escuela de Química, Universidad de Costa Rica, San José, 2060, Costa Rica   Email: jorge.cabezas@ucr.ac.cr
,
Rebeca R. Poveda
Escuela de Química, Universidad de Costa Rica, San José, 2060, Costa Rica   Email: jorge.cabezas@ucr.ac.cr
,
José A. Brenes
Escuela de Química, Universidad de Costa Rica, San José, 2060, Costa Rica   Email: jorge.cabezas@ucr.ac.cr
› Author Affiliations
Further Information

Publication History

Received: 01 June 2018

Accepted after revision: 05 June 2018

Publication Date:
23 July 2018 (online)

This article is dedicated to Professor Cam Oehlschlager, senior supervisor and friend

Abstract

Sequential treatment of 2,3-dichloropropene with magnesium and n-BuLi generates the operational equivalent of 1,3-dilithiopropyne, which upon treatment with aldehydes or ketones, produces the corresponding alkoxy lithium acetylide intermediates. Reaction of this alkoxide with tosyl chloride, and t-BuLi produces 1-substituted, or 1,1-disubstituted 1,3-enynes in a one-pot reaction. When this lithium acetylide intermediates, obtained by this procedure, were used to perform palladium-catalyzed cross-coupling reactions, followed by addition of thionyl chloride and pyridine, 1,4-disubstituted or 1,1,4-trisubstituted 1,3-enynes were obtained in a one-pot protocol.

Supporting Information

 
  • References

    • 1a MacMillan JB. Xiong-Zhou G. Skepper CK. Molinski TF. J. Org. Chem. 2008; 73: 3699
    • 1b Skepper CK. MacMillan JB. Zhou GX. Masuno MN. Molinski TF. J. Am. Chem. Soc. 2007; 129: 4150
  • 2 Frost JR. Pearson CM. Snaddon TN. Booth RA. Turner RM. Gold J. Shaw DM. Gaunt MJ. Ley SV. Chem. Eur. J. 2015; 21: 13261
  • 3 Zampella A. D’Auria MV. Minale L. Debitus C. Roussakis C. J. Am. Chem. Soc. 1996; 118: 11085
  • 4 Loeblich AR. III. Smith E. Lipids 1968; 3: 1, 5
  • 5 Johansen JE. Svec WA. Liaaen-Jensen S. Haxo FT. Phytochemistry 1974; 13: 2261
  • 6 Aakermann T. Liaaen-Jensen S. Phytochemistry 1992; 31: 1779
  • 7 Ishida N. Mizugaki K. Kumagai K. Rikimaru M. J. Antibiot. 1965; 18: 68
  • 8 Edo K. Mizugaki M. Koide Y. Seto H. Furihata K. Otake N. Ishida N. Tetrahedron Lett. 1985; 26: 331
  • 9 Maeda H. Adv. Drug Deliv. Rev. 2001; 46: 169
    • 10a Ono Y. Yatanabe Y. Ishida N. Biochim. Biophys. Acta 1966; 119: 46
    • 10b Beerman TA. Goldberg IH. Biochem. Biophys. Res. Commun. 1974; 59: 1254
    • 10c Nicolaou KC. Dai WM. Angew. Chem. Int. Ed. 1991; 30: 1387
  • 11 Leet JE. Schroeder DR. Langley DR. Colson KL. Huang S. Klohr SE. Lee MS. Golik J. Hofstead SJ. Doyle TW. Matson JA. J. Am. Chem. Soc. 1993; 115: 8432
  • 12 Ren F. Hogan PC. Anderson AJ. Myers AG. J. Am. Chem. Soc. 2007; 129: 5381
  • 13 Konishi M. Ohkuma H. Tsuno T. Oki T. VanDuyne GD. Clardy J. J. Am. Chem. Soc. 1990; 112: 3715
  • 14 Konishi M. Ohkuma H. Matsumoto K. Tsuno T. Kamei H. Miyaki T. Oki T. Kawaguchi H. VanDuyne GD. Clardy J. J. Antibiot. 1989; 42: 1449
    • 15a Lee MD. Dunne TS. Siegel MM. Chang CC. Morton GO. Borders DB. J. Am. Chem. Soc. 1987; 109: 3464
    • 15b Lee MD. Dunne TS. Chang CC. Ellestad GA. Siegel MM. Morton GO. McGahren WJ. Borders DB. J. Am. Chem. Soc. 1987; 109: 3466
  • 16 Daly JW. Ferreira D. Gould StJ. Haslam E. Robins DJ. Roux DG. Weinreb StM. Alkaloids of Neotropical Poison Frogs (Dendrobatidae). In Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. Vol. 41 Herz W. Grisebach H. Kirby GW. Springer; Vienna: 1982: 205
  • 17 Daly JW. Witkop B. Tokuyama T. Nishikawa T. Karle IL. Helv. Chim. Acta 1977; 60: 1128
  • 18 Daly JW. Ware N. Saporito RA. Spande TF. Garraffo HM. J. Nat. Prod. 2009; 72: 1110
  • 19 Kuhnt D. Anke T. Besl H. Bross M. Herrmann R. Mocek U. Steffan B. Steglich W. J. Antibiot. 1990; 43: 1413
  • 20 Stütz A. Angew. Chem. Int. Ed. 1987; 26: 4-320
  • 21 Petranyi G. Ryder NS. Stütz A. Science 1984; 224: 1239
    • 22a Ellis DH. Watson AB. Marley JE. Williams TG. Br. J. Dermatol. 1997; 136: 490
    • 22b Jain S. Sehgal VN. Int. J. Dermatol. 2000; 39: 412
    • 23a Sonoda H. Nishida K. Yoshioka T. Ohtani M. Sugita K. Oncogene 1996; 13: 143
    • 23b Kim YB. Lee KH. Sugita K. Yoshida M. Horinouchi S. Oncogene 1999; 18: 2461
    • 24a Schaubach S. Michigami K. Furstner A. Synthesis 2017; 49: 1: 201
    • 24b Bharathiraja G. Sathishkannan G. Punniyamurthy T. J. Org. Chem. 2016; 81: 2670
    • 24c Geary LM. Woo SK. Leung JC. Krische MJ. Angew. Chem. Int. Ed. 2012; 51: 2972
    • 24d Wessig P. Muller G. Chem. Rev. 2008; 108: 2051
    • 24e Cabezas JA. Oehlschlager AC. Synthesis 1999; 107
    • 24f Rossi R. Carpita A. Quirici MG. Gaudenzi ML. Tetrahedron 1982; 38: 631
    • 24g Kinoshita H. Ishikawa T. Miura K. Org. Lett. 2011; 13: 6192
    • 25a Gorgas K. Alves LG. Stoeger B. Martins AM. Veiros LF. Kirchner K. J. Am. Chem. Soc. 2017; 139: 8130
    • 25b Zhou Y. Ye F. Zhou Q. Zhang Y. Wang J. Org. Lett. 2016; 18: 2024
    • 25c Wang NN. Huang LR. Hao WJ. Zhang TS. Li G. Tu SJ. Jiang B. Org. Lett. 2016; 18: 1298
    • 25d Jiao JY. Zhang XG. Zhang XH. Tetrahedron 2015; 71: 9245
    • 25e Finkbeiner P. Kloeckner U. Nachtsheim BJ. Angew. Chem. Int. Ed. 2015; 54: 4949
    • 25f Ilies L. Yoshida T. Nakamura E. Synlett 2014; 25: 527
    • 25g Ahammed S. Kundu D. Ranu BC. J. Org. Chem. 2014; 79: 7391
    • 25h Shao YL. Zhang XH. Han JS. Zhong P. Org. Lett. 2014; 16: 3611
    • 25i Xu S. Wang L. Tang Y. He Z. Synthesis 2014; 46: 2085
    • 25j Cornelissen L. Lefrancq M. Riant O. Org. Lett. 2014; 16: 3024
    • 25k Alcaide B. Almendros P. Martínez del Campo T. Org. Biomol. Chem. 2012; 10: 7603
    • 25l Yan W. Ye X. Akhmedov NG. Petersen JL. Shi X. Org. Lett. 2012; 14: 2358
    • 25m Wen Y. Wang A. Jiang H. Zhu S. Huang L. Tetrahedron Lett. 2011; 52: 44-5736
    • 25n Hatakeyama T. Yoshimoto Y. Gabriel T. Nakamura M. Org. Lett. 2008; 10: 5341
    • 25o Blangetti M. Deagostino A. Rosso H. Prandi C. Zavattaro C. Venturello P. Eur. J. Org. Chem. 2007; 35: 5867
    • 25p Liu F. Ma D. J. Org. Chem. 2007; 72: 4844
    • 25q Stefani HA. Cella R. Doerr FA. Pereira CM. P. Zeni G. Gomes M. Tetrahedron Lett. 2005; 46: 4-563
    • 25r Karatholuvhu MS. Fuchs PL. J. Am. Chem. Soc. 2004; 126: 14314
    • 25s Masuda Y. Murata M. Sato K. Watanabe S. Chem. Commun. 1998; 7: 807
    • 25t Madec D. Pujol S. Henryon V. Ferezou JP. Synlett 1995; 435
    • 25u Stang PJ. Kitamura T. J. Am. Chem. Soc. 1987; 109: 7561
    • 25v Padmanabhan S. Nicholas KM. Tetrahedron Lett. 1982; 23: 2555
  • 26 Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett. 1975; 50: 4467
    • 27a Ratovelomanana V. Linstrumelle G. Tetrahedron Lett. 1981; 22: 315
    • 27b Bates CG. Saejueng P. Venkataraman D. Org. Lett. 2004; 6: 1441
    • 27c Saha D. Chatterjee T. Mukherjee M. Ranu BC. J. Org. Chem. 2012; 77: 9379
    • 27d Mi X. Huang M. Feng Y. Wu Y. Synlett 2012; 23: 1257
  • 28 Negishi E. Anastasia L. Chem. Rev. 2003; 103: 1979 ; and references cited therein
  • 29 Trost BM. Masters JT. Chem. Soc. Rev. 2016; 45: 2212 ; and references cited therein
  • 30 Hooz J. Cabezas J. Musmanni S. Calzada J. Org. Synth. 1990; 69: 120
  • 31 Cabezas JA. Pereira AR. Amey A. Tetrahedron Lett. 2001; 42: 6819
  • 32 Umaña CA. Cabezas JA. J. Org. Chem. 2017; 82: 9505
  • 33 Negishi EI. Akiyoshi K. Takahashi T. J. Chem. Soc., Chem. Commun. 1987; 477
    • 34a Hudrlik PF. Peterson D. J. Am. Chem. Soc. 1975; 97: 1464
    • 34b Ager DJ. Org. React. 1990; 38: 1
    • 34c Ager DJ. Synthesis 1990; 384
    • 35a Hughes DL. Org. React. 1992; 42: 335
    • 35b Kumara Swamy KC. K. Bhuvan Kumar NN. Balaraman E. Pavan Kumar KV. P. Chem. Rev. 2009; 109: 2551
  • 36 Liu F. Negishi EI. J. Org. Chem. 1997; 62: 8591
  • 37 Waston SC. Eastham JF. J. Organomet. Chem. 1967; 9: 165
  • 38 In the current procedure a solvent ration (v/v) of Et2O/hexanes of 1:1 was used, as previously reported.30