Synthesis 2018; 50(18): 3679-3685
DOI: 10.1055/s-0037-1610180
feature
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Electrochemical Study of 1,1′-Thienyl-Substituted Fused Bis-germatranes with a Core 5c-6e Hyperbond

Vitalijs Romanovs*
a  Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia   Email: vitalijs.romanovs@inbox.lv
,
Jana Spura
a  Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia   Email: vitalijs.romanovs@inbox.lv
,
b  UMR 6226 ISCR, CORINT, University of Rennes I, 35042, Rennes, France   Email: vjouikov@univ-rennes1.fr
› Author Affiliations
The authors are grateful for the financial support of this project by EC 7th Framework Program REGPOT-CT-2013-316149-InnovaBalt and by OSMOSE No 39660QC.
Further Information

Publication History

Received: 27 March 2018

Accepted after revision: 15 May 2018

Publication Date:
14 June 2018 (online)


Published as part of the Special Section on the Main Group Metal Chemistry Symposium

Abstract

Novel fused bis-germatranes containing three hypercoordinated atoms (two Ge and one N) and substituted at the 1,1′-positions with bromo-thienyl groups [(3-bromo-2-thienyl)-, (3,5-dibromo-2-thienyl)-, and 3-(4-bromo)-2-thienyl] have been synthesized from the corresponding triethoxy(thienyl)germanes and tris(1,3-dihydroxypropan-2-yl)amine. The doubly degenerated HOMO and HOMO-1 in these compounds are localized on the thienyl substituents while a 5c-6e hyperbond of the bis-germatranyl core (C–Ge←N→Ge–C system) is only a lower lying HOMO-2. Square-wave pulse voltammetry in CH3CN/0.1 M Bu4NPF6 shows all three compounds to undergo reversible electrochemical oxidation affecting one thienyl substituent. The DFT B3LYP/Lanl2DZ//HF/6-311G(d,p) calculations of their cation radicals suggest the enhancement and shortening of the N→Ge intramolecular dative bond on the side of the oxidized thienyl unit because of the positive charge and the increased acceptor character of the latter; this is accompanied by the loss of the N→Ge dative bond on the side of the non-oxidized substituent and a substantial pyramidalization of the Ge atom.

Supporting Information

 
  • References

    • 2a Gar TK. Khromova NYu. Sonina NV. Nikitin VS. Polyakova MV. Mironov VF. Zh. Obshch. Khim. 1979; 49: 1516
    • 2b Karpenko RG. Kolesnikov SP. Russ. Chem. Bull. 1999; 48: 1185
    • 2c Sidorkin VF. Pestunovich VA. Balakhchi GK. Voronkov MG. Izv. Akad. Nauk SSSR Ser. Khim. 1985; 3: 622
    • 2d Lukevics E. Germane S. Ignatovich L. Appl. Organomet. Chem. 1992; 6: 543
    • 2e Zelchan GI. Lapsinya AF. Solomennikova II. Lukevics E. Liepin’sh EE. Kupche EL. Zh. Obshch. Khim. 1983; 53: 1069
    • 2f Chernyshev EA. Knyazev SP. Kirin VN. Vasilev IM. Alekseev NV. Russ. J. Gen. Chem. 2004; 74: 58
    • 2g Lukevics E. Ignatovich L. Belyakov S. Chem. Heterocycl. Compd. 2007; 43: 243
    • 4a Lukevics E. Ignatovich L. Shilina N. Germane S. Appl. Organomet. Chem. 1992; 6: 261
    • 4b Lukevics E. Ignatovich L. Shul’ga T. Mitchenko O. Belyakov S. J. Organomet. Chem. 2002; 659: 165
  • 5 Satge, J. NTIS Report 1987, PB88-208749, 52 p. Gov. Rep. Announce. Index (U.S.) 1988, 88/18, 846,150 (CAN 111: 49256).
  • 6 Kolesnikova OP. Tuzova MN. Kudaeva OT. Safronova IV. Mirskova AN. Baryshok VP. Kozlov VA. Immunologiya (Moscow) 1995; 1: 27
  • 7 Viktorov NA. Pavlov KV. Mironov VF. Shipilov VI. Dudnikov AI. Mikhalishin VV. Savelyev VYu. Mamkov NS. Alexanyan RL. Khim.-Farm. Zh. 1992; 26: 72
  • 8 Lukevics E. Ignatovich L. Belyakov S. J. Organomet. Chem. 1999; 588: 222
    • 9a Sidorkin VF. Pestunovich VA. Voronkov MG. Dokl. Akad. Nauk SSSR 1977; 235: 136
    • 9b Voronkov MG. Baryshok VP. J. Organomet. Chem. 1982; 239: 199
    • 9c Sidorkin VF. Pestunovich VA. Balakhchi GK. Voronkov MG. Izv. Akad. Nauk SSSR, Ser. Khim. 1985; 3: 622
    • 10a Glowacki B. Lutter M. Alnasr H. Seymen R. Hiller W. Jurkschat K. Inorg. Chem. 2017; 56: 4937
    • 10b Soualmi S. Ignatovich L. Lukevics E. Ourari A. Jouikov V. J. Organomet. Chem. 2008; 693: 1346
    • 10c Soualmi S. Ignatovich L. Jouikov V. Appl. Organomet. Chem. 2010; 24: 865
    • 10d Meshgi A. Baumgartner J. Marschner C. Jouikov V. Organometallics 2016; 36: 342
    • 10e Jouikov V. ECS Trans. 2010; 28: 5
  • 11 Ignatovich L. Jouikov V. J. Organomet. Chem. 2014; 751: 546
  • 12 Romanovs V. Sidorkin V. Belogolova EF. Jouikov V. Dalton Trans. 2017; 46: 8849
  • 13 Peureux C. Jouikov V. Chem. Eur. J. 2014; 20: 9357
  • 14 Sidorkin V. Belogolova EF. Wang Y. Jouikov V. Doronina EP. Chem. Eur. J. 2017; 23: 1910
    • 15a Yoshida J.-I. Maekawa T. Murata T. Matsunaga S.-I. Isoe S. J. Am. Chem. Soc. 1990; 112: 1962
    • 15b Roncali J. Guy A. Lemaire M. Garreau R. Hoa HA. J. Electroanal. Chem. 1991; 312: 277
    • 15c Jouikov V. Fattahova D. Electrochim. Acta 1998; 43: 1811
    • 16a Broka K. Glezer VT. Stradins J. Zelcans G. Zh. Obshch. Khim. 1991; 61: 1374
    • 16b Broka K. Stradins J. Glezer VT. Zelcans G. Lukevics E. J. Electroanal. Chem. 1993; 351: 199
  • 17 Lukevics E. Ignatovich L. Porsiurova N. Germane S. Appl. Organomet. Chem. 1988; 2: 115
  • 18 Organic Electrochemistry . Lund H. Hammerich O. Marcel Dekker; New York: 2001. 4th ed.
  • 19 Karapetyan YA. Eychis VN. Physico-chemical Properties of Non-aqueous Solutions of Electrolytes. Khimia; Moscow: 1989
  • 20 Malachesky P. Anal. Chem. 1969; 41: 1493
  • 21 Orazem M. Tribollet B. Electrochemical Impedance Spectroscopy . John Wiley; Hoboken: 2008
    • 22a Krische B. Zagorska M. Synth. Met. 1989; 33: 257
    • 22b Tanaka K. Shichiri T. Wang S. Yamabe T. Synth. Met. 1988; 24: 203
  • 23 Jie Y. Livant P. Li H. Yang M. Zhu W. Cammarata V. Almond P. Sullens T. Qin Y. Bakker E. J. Org. Chem. 2010; 75: 4472
    • 24a Namazian M. Coote ML. J. Phys. Chem. A 2007; 111: 7227
    • 24b Shi LH. Roncali J. Gamier F. J. Electroanal. Chem. 1989; 263: 155
    • 24c Bondi A. J. Phys. Chem. 1964; 68: 441
  • 25 Mann CK. Barnes KK. Electrochemical Reactions in Nonaqueous Systems . Marcel Dekker; New York: 1970: 560
  • 26 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Jr. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PM. W. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision B.01. Gaussian Inc; Pittsburgh: 2003
  • 27 Tomasi J. Mennucci B. Cammi R. Chem. Rev. 2005; 105: 2999