Synthesis 2018; 50(15): 2867-2877
DOI: 10.1055/s-0037-1610165
short review
© Georg Thieme Verlag Stuttgart · New York

Synthetic Strategies for the Regioselective Functionalization of Tribenzotriquinacenes

a  Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany   Email: [email protected]
b  Universität Würzburg, Center for Nanosystems Chemistry (CNC), & Bavarian Polymer Institute (BPI), Theodor-Boveri-Weg, 97074 Würzburg, Germany
,
a  Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany   Email: [email protected]
b  Universität Würzburg, Center for Nanosystems Chemistry (CNC), & Bavarian Polymer Institute (BPI), Theodor-Boveri-Weg, 97074 Würzburg, Germany
› Author Affiliations
The authors thank the Fonds der Chemischen Industrie (Liebig fellowship for F.B.), the DFG (BE4808/2-1) and the Bavarian Ministry for Science, Research and the Arts (Collaborative Research Network ‘Solar Technologies Go Hybrid’ and Bavarian Polymer Institute) for their generous financial support.
Further Information

Publication History

Received: 24 April 2018

Accepted: 27 April 2018

Publication Date:
18 June 2018 (online)


Abstract

The rigid molecular scaffold of the tribenzotriquinacenes (TBTQs) has emerged as a versatile structural platform that possesses unique geometrical features and allows for an orthogonal arrangement of organic functional substituents or convex-concave interactions. In this review, we summarize and discuss important synthetic strategies for a regioselective functionalization at the four distinct positions of the TBTQ basic framework, namely, apical, bridgehead, ortho, and outer rim.

1 Introduction

2 Structure and Synthesis of TBTQs

3 Bridgehead Functionalization

4 Outer Rim Functionalization

5 ortho-Functionalization

6 Apical Functionalization

7 Conclusion and Outlook

 
  • References

  • 1 Narita A. Wang X.-Y. Feng X. Müllen K. Chem. Soc. Rev. 2015; 44: 6616
  • 2 Wu J. Pisula W. Müllen K. Chem. Rev. 2007; 107: 718
  • 3 Wu Y.-T. Siegel JS. Chem. Rev. 2006; 106: 4843
  • 4 Kuck D. Angew. Chem. Int. Ed. 1984; 23: 508
  • 5 Kuck D. Lindenthal T. Schuster A. Chem. Ber. 1992; 125: 1449
  • 6 Kuck D. Chem. Rev. 2006; 106: 4885
  • 7 Woodward RB. Fukunaga T. Kelly RC. J. Am. Chem. Soc. 1964; 86: 3162
  • 8 Beuerle F. Gole B. Angew. Chem. Int. Ed. 2018; 57: 4850
  • 9 Kuck D. Pure Appl. Chem. 2006; 78: 749
  • 10 Kuck D. Chem. Rec. 2015; 15: 1075
  • 11 Kuck D. Schuster A. Krause RA. Tellenbröker J. Exner CP. Penk M. Bögge H. Müller A. Tetrahedron 2001; 57: 3587
  • 12 Tellenbröker J. Kuck D. Beilstein J. Org. Chem. 2011; 7: 329
  • 13 Mughal EU. Kuck D. Org. Biomol. Chem. 2010; 8: 5383
  • 14 Henne S. Bredenkötter B. Volkmer D. Appl. Surf. Sci. 2015; 356: 645
  • 15 Beaudoin D. Rominger F. Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15599
  • 16 Wang T. Zhang Y.-F. Hou Q.-Q. Xu W.-R. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2013; 78: 1062
  • 17 Klotzbach S. Scherpf T. Beuerle F. Chem. Commun. 2014; 50: 12454
  • 18 Klotzbach S. Beuerle F. Angew. Chem. Int. Ed. 2015; 54: 10356
  • 19 Beuerle F. Klotzbach S. Dhara A. Synlett 2016; 27: 1133
  • 20 Beaudoin D. Rominger F. Mastalerz M. Angew. Chem. Int. Ed. 2017; 56: 1244
  • 21 Bredenkötter B. Henne S. Volkmer D. Chem.–Eur. J. 2007; 13: 9931
  • 22 Henne S. Bredenkötter B. Dehghan Baghi AA. Schmid R. Volkmer D. Dalton Trans. 2012; 41: 5995
  • 23 Bredenkötter B. Grzywa M. Alaghemandi M. Schmid R. Herrebout W. Bultinck P. Volkmer D. Chem.–Eur. J. 2014; 20: 9100
  • 24 Wang T. Li Z.-Y. Xie A.-L. Yao X.-J. Cao X.-P. Kuck D. J. Org. Chem. 2011; 76: 3231
  • 25 Henne S. Bredenkötter B. Alaghemandi M. Bureekaew S. Schmid R. Volkmer D. ChemPhysChem 2014; 15: 3855
  • 26 Mughal EU. Kuck D. Chem. Commun. 2012; 48: 8880
  • 27 Ip H.-W. Ng C.-F. Chow H.-F. Kuck D. J. Am. Chem. Soc. 2016; 138: 13778
  • 28 Ip H.-W. Chow H.-F. Kuck D. Org. Chem. Front. 2017; 4: 817
  • 29 Brandenburg JG. Grimme S. Jones PG. Markopoulos G. Hopf H. Cyranski MK. Kuck D. Chem.–Eur. J. 2013; 19: 9930
  • 30 Markopoulos G. Henneicke L. Shen J. Okamoto Y. Jones PG. Hopf H. Angew. Chem. Int. Ed. 2012; 51: 12884
  • 31 Beaudoin D. Rominger F. Mastalerz M. Synthesis 2015; 47: 3846
  • 32 Tomaschautzky J. Neumann B. Stammler H.-G. Mitzel NW. Dalton Trans. 2017; 46: 1112
  • 33 Schuster A. Kuck D. Angew. Chem. Int. Ed. 1991; 30: 1699
  • 34 Kuck D. Schuster A. Ohlhorst B. Sinnwell V. de Meijere A. Angew. Chem. Int. Ed. 1989; 28: 595
  • 35 Haag R. Ohlhorst B. Noltemeyer M. Schuster A. Kuck D. de Meijere A. Chem. Commun. 1993; 1727
  • 36 Haag R. Kuck D. Fu X.-Y. Cook JM. de Meijere A. Synlett 1994; 340
  • 37 Haag R. Ohlhorst B. Noltemeyer M. Fleischer R. Stalke D. Schuster A. Kuck D. de Meijere A. J. Am. Chem. Soc. 1995; 117: 10474
  • 38 Georghiou PE. Dawe LN. Tran H.-A. Strübe J. Neumann B. Stammler H.-G. Kuck D. J. Org. Chem. 2008; 73: 9040
  • 39 Langhals H. Rauscher M. Strübe J. Kuck D. J. Org. Chem. 2008; 73: 1113
  • 40 Xu W.-R. Xia G.-J. Chow H.-F. Cao X.-P. Kuck D. Chem.–Eur. J. 2015; 21: 12011
  • 41 Dhara A. Beuerle F. Chem.–Eur. J. 2015; 21: 17391
  • 42 Vile J. Carta M. Bezzu CG. McKeown NB. Polym. Chem. 2011; 2: 2257
  • 43 Harig M. Neumann B. Stammler H.-G. Kuck D. Eur. J. Org. Chem. 2004; 2381
  • 44 Zhou L. Zhang T.-X. Li B.-R. Cao X.-P. Kuck D. J. Org. Chem. 2007; 72: 6382
  • 45 Linke J. Bader N. Tellenbröker J. Kuck D. Synthesis 2018; 50: 175
  • 46 Tellenbröker J. Kuck D. Angew. Chem. Int. Ed. 1999; 38: 919
  • 47 Li Z.-M. Hu D. Wei J. Qi Q. Cao X.-P. Chow H.-F. Kuck D. Synthesis 2018; 50: 1457
  • 48 Zhang Y.-F. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2017; 82: 179
  • 49 Greschner W. Neumann B. Stammler H.-G. Gröger H. Kuck D. Angew. Chem. Int. Ed. 2015; 54: 13764
  • 50 Xu W.-R. Chow H.-F. Cao X.-P. Kuck D. J. Org. Chem. 2014; 79: 9335
  • 51 Niu W.-X. Wang T. Hou Q.-Q. Li Z.-Y. Cao X.-P. Kuck D. J. Org. Chem. 2010; 75: 6704
  • 52 Wang T. Hou Q.-Q. Teng Q.-F. Yao X.-J. Niu W.-X. Cao X.-P. Kuck D. Chem.–Eur. J. 2010; 16: 12412
  • 53 Beaudoin D. Rominger F. Mastalerz M. Eur. J. Org. Chem. 2016; 4470
  • 54 Strübe J. Neumann B. Stammler H.-G. Kuck D. Chem.–Eur. J. 2009; 15: 2256
  • 55 Li Z.-M. Li Y.-W. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2018; 83: 3433
  • 56 Dullaghan CA. Carpenter GB. Sweigart DA. Kuck D. Fusco C. Curci R. Organometallics 2000; 19: 2233
  • 57 Kirchwehm Y. Damme A. Kupfer T. Braunschweig H. Krueger A. Chem. Commun. 2012; 48: 1502
  • 58 Kuck D. Schuster A. Fusco C. Fiorentino M. Curci R. J. Am. Chem. Soc. 1994; 116: 2375
  • 59 Dhara A. Weinmann J. Krause A.-M. Beuerle F. Chem.–Eur. J. 2016; 22: 12473