Synthesis 2018; 50(18): 3653-3661
DOI: 10.1055/s-0037-1610164
short review
© Georg Thieme Verlag Stuttgart · New York

Organotin(IV) Complexes Containing Sn–O–Se Moieties: A Structural Inventory

Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, Université de Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon Cedex, France   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 26 April 2018

Accepted after revision: 30 April 2018

Publication Date:
14 June 2018 (online)


Dedicated to Professor Libasse Diop and his colleagues from the LACHIMIA laboratory (Dakar) for their contributions in this field.

Published as part of the Special Section on the Main Group Metal Chemistry Symposium

Abstract

This review focuses on organotin compounds exhibiting Sn–O–Se moieties, the molecular structures of which have been previously resolved by single-crystal X-ray diffraction analysis. Three distinct classes of compounds have been identified. Thus, the various modes of coordination of selenite, selenate and organoseleninate anions with tin atoms of organotin(IV) fragments are illustrated and detailed.

1 Introduction

2 Organotin(IV) Selenite Complexes

3 Organotin(IV) Selenate Complexes

4 Organotin(IV) Organoseleninate Complexes

5 Summary

 
  • References

  • 1 Lambourne H. J. Chem. Soc. 1924; 125: 2013
  • 2 Holmes RR. Acc. Chem. Res. 1989; 22: 190
  • 3 Chandrasekhar V. Gopal K. Sasikumar P. Thirumoorthi R. Coord. Chem. Rev. 2005; 249: 1745
    • 4a Chandrasekhar V. Nagendran S. Baskar V. Coord. Chem. Rev. 2002; 235: 1
    • 4b Chandrasekhar V. Gopal K. Thilagar P. Acc. Chem. Res. 2007; 40: 420
    • 4c Chandrasekhar V. Singh P. Gopal K. Appl. Organomet. Chem. 2007; 21: 483
  • 5 Chandrasekhar V. Singh P. Gopal K. In Tin Chemistry: Fundamentals, Frontiers, and Applications . Davies AG. Gielen M. Pannell KH. Tiekink ER. T. John Wiley & Sons; Chichester: 2008: 93
    • 6a Chandrasekhar V. Gopal K. App. Organomet. Chem. 2005; 19: 429
    • 6b Metre RK. Mohapatra C. Sahoo D. Chandrasekhar V. Dalton Trans. 2014; 43: 3364
    • 7a Xie Y.-P. Yang J. Ma J.-F. Zhang L.-P. Song S.-Y. Su Z.-M. Chem. Eur. J. 2008; 14: 4093
    • 7b Xie Y.-P. Ma J.-F. Yang J. Liu Y.-Y. Ma J.-C. Su M.-Z. Eur. J. Inorg. Chem. 2009; 2144
  • 8 Beckmann J. Appl. Organomet. Chem. 2005; 19: 494
  • 9 Abbas SM. Ali S. Hussain ST. Shahzadi S. J. Coord. Chem. 2013; 66: 2217
    • 10a Ribot F. Sanchez C. Willem R. Martins JC. Biesemans M. Inorg. Chem. 1998; 37: 911
    • 10b Ribot F. Escax V. Martins JC. Biesemans M. Ghys L. Verbruggen I. Willem R. Chem. Eur. J. 2004; 10: 1747
    • 10c Plasseraud L. Cattey H. Richard P. Z. Naturforsch. B 2011; 66: 262
  • 11 Roesky HW. Haiduc I. Hosmane NS. Chem. Rev. 2003; 103: 2579
  • 12 Schubert U. J. Sol-Gel Sci. Technol. 2016; 79: 249
  • 13 Sanchez C. Soler-Illia GJ. de A. A. Ribot F. Lalot T. Mayer CR. Cabuil V. Chem. Mater. 2001; 13: 3061
    • 14a Beckmann J. Dakternieks D. O’Connell J. Jurkschat K. Schurmann M. Eur. J. Inorg. Chem. 2002; 1484
    • 14b Beckmann J. Dakternieks D. Duthie A. Lewcenko NA. Mitchell C. Angew. Chem. Int. Ed. 2004; 43: 6683
    • 14c Beckmann J. Dakternieks D. Duthie A. Mitchell C. Acta Crystallogr., Sect. E 2004; 60 m: 1978
    • 14d Beckmann J. Dakternieks D. Duthie A. Mitchell C. Dalton Trans. 2005; 1563
    • 14e Beckmann J. Bolsinger J. Hesse M. Organometallics 2009; 28: 4225
    • 15a Ma C. Cheng S. Hu Z. Li O. Zhang R. Zhang S. Dalton Trans. 2014; 43: 671
    • 15b Zhang R.-F. Yan P.-Z. Li Q.-L. Ma C.-L. J. Coord. Chem. 2014; 67: 649
    • 15c Zhang R.-F. Nie J.-J. Yan P.-Z. Li Q.-L. Zhang S.-L. Ma C.-L. J. Organomet. Chem. 2016; 819: 11
    • 15d Ma C. Liu X. Cheng S. Li Q. Zhang R. New J. Chem. 2016; 40: 6946
    • 15e Zhang R. Hu Z. Li Q. Yan P. Wang S. Ma C. Heteroat. Chem. 2014; 25: 217
  • 16 Herntrich T. Merzweiler K. Z. Anorg. Allg. Chem. 2010; 636: 803
  • 17 Vij A. Wilson WW. Vij V. Corley RC. Tham FS. Gerken M. Haiges R. Schneider S. Schroer T. Wagner RI. Inorg. Chem. 2004; 43: 3189
  • 18 Diallo W. Diop L. Molloy KC. Kociok-Kohn G. Main Group Met. Chem. 2011; 34: 55
  • 19 Diasse-Sarr A. Diop L. Mahon MF. Molloy KC. Main Group Met. Chem. 1997; 20: 223
  • 20 Diallo W. Diop CA. K. Diop L. Mahon MF. Molloy KC. Russo U. Biesemans M. Willem R. J. Organomet. Chem. 2007; 692: 2187
  • 21 Mairychova B. Svoboda T. Erben M. Ruzicka A. Dostál L. Jambor R. Organometallics 2013; 32: 157
  • 22 Chen W.-C. Qin C. Li Y.-G. Zang H.-Y. Shao K.-Z. Su Z.-M. Wang E.-B. Liu H.-S. Chem. Commun. 2015; 51: 2433
  • 23 Diop CA. Diop L. Russo U. Sanchez-Diaz A. Castineiras A. Z. Naturforsch. B 2001; 56: 233
  • 24 Diop CA. K. Toure A. Diop A. Bassene S. Sidibe M. Diop L. Mahon MF. Molloy KC. Russo U. J. Soc. Ouest-Afr. Chim. 2007; 023: 49
  • 25 Diallo W. Diop L. Plasseraud L. Cattey H. Main Group Met. Chem. 2014; 37: 107
  • 26 Ansorge U. Lindner E. Strahle J. Chem. Ber. 1978; 111: 3048
  • 27 Chandrasekhar V. Muralidhara MG. Thomas KR. J. Tiekink ER. T. Inorg. Chem. 1992; 31: 4707
  • 28 Shen L. Cao Y. Hu CW. Chin. Chem. Lett. 2009; 20: 370
  • 29 Ru J. Zhang R. Acta Crystallogr. 2011; E67: m1809
  • 30 Ma C. Guo M. Ru J. Wang Q. Zhang R. Inorg. Chim. Acta 2011; 378: 315
  • 31 Zhang R.-F. Ru J. Li Z.-X. Ma C.-L. Zhang J.-P. J. Coord. Chem. 2011; 64: 4122
  • 32 Ma C. Li Z. Li Q. Wang F. Zhang R. Zhang Q. Struct. Chem. 2014; 25: 949
  • 33 Wang F. Zhang R. Cheng S. Li Q. Ma C. J. Organomet. Chem. 2015; 789–790: 46
  • 34 Zhang R.-F. Wang F. Li Q.-L. Zhang S.-L. Ma C.-L. J. Coord. Chem. 2016; 69: 704
  • 35 Guo M. Ru J. Zhang R. Acta Crystallogr. 2011; E67: m152
  • 36 Fu C. Zhang R. Yan M. IUCrData 2017; 2: x171457
  • 37 Ma C. Ru J. Li Z. Zhang R. J. Inorg. Organomet. Polym. Mater. 2012; 22: 1287