Synthesis 2018; 50(18): 3603-3614
DOI: 10.1055/s-0037-1610162
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in NMR: Aggregation, Solvation, and Dynamics of Selected Organolithium Compounds

Normandie Université, Laboratoire COBRA, UMR6014 & FR3038 CNRS; Université de Rouen; INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 07 March 2018

Accepted after revision: 25 April 2018

Publication Date:
11 June 2018 (online)


Published as part of the Special Section on the Main Group Metal Chemistry Symposium

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is the most widely used analytical technique to study the structure and dynamics of organolithium compounds, which are the most popular reagents in organic synthesis due to their great diversity and high reactivity. The main strength of this method is that it allows direct analysis in solution of the aggregation, dynamic, and solvation state of reactive intermediates. In this review, we present the NMR tools (nD) involving the 6Li isotope and DOSY experiments with internal references and illustrate their contribution in the structural and dynamic characterization of organolithium compounds in solution through some selected example.

1 Introduction

2 Advantages of the 6Li isotope

3 NMR Experiments Involving the 6Li Isotope

4 Diffusion Ordered NMR Experiments

5 Application of NMR to the Structural Characterization of Organolithium Species

6 Conclusion

 
  • References

  • 1 Noyori R. Kitamura M. Angew. Chem., Int. Ed. Engl. 1991; 30: 49
  • 2 Arnett E. Moe KD. J. J. Am. Chem. Soc. 1991; 113: 7068
  • 3 Bailey WF. Patricia JJ. J. Organomet. Chem. 1988; 352: 1
    • 4a Seebach D. Angew. Chem., Int. Ed. Engl. 1988; 27: 1624
    • 4b Bauer W. Schleyer P. vR. Adv. Carbanion Chem. 1992; 1: 89
  • 6 Seitz LM. Brown TL. J. Am. Chem. Soc. 1966; 88: 2174
  • 7 Wehrli FW. Org. Magn. Reson. 1978; 11: 106
  • 8 Fraenkel G. Fraenkel AM. Geckle MJ. Frank S. J. Am. Chem. Soc. 1979; 101: 4745
    • 9a Arvidsson PI. Davidsson O. Angew. Chem. Int. Ed. 2000; 39: 1467
    • 9b Sott R. Granander J. Hilmersson G. J. Am. Chem. Soc. 2004; 126: 6798
    • 9c Thomas RD. Jensen RM. Young TC. Organometallics 1987; 6: 565
    • 9d Jackman LM. Scarmoutzos LM. DeBrosse CW. J. Am. Chem. Soc. 1987; 109: 5355
    • 9e Granander J. Sott R. Hilmersson G. Chem. Eur. J. 2006; 12: 4191
    • 9f Hilmersson G. Davidsson O. Organometallics 1995; 14: 912
  • 10 Bauer W. Winchester WR. Schleyer P. vR. Organometallics 1987; 6: 2371
    • 11a Koizumi T. Morihashi K. Kikuchi O. Bull. Chem. Soc. Jpn. 1996; 69: 305
    • 11b Bauer W. Schleyer P. vR. In Advances in Carbanion Chemistry . Vol. 1. Snieckus V. JAI Press; Greenwich (CT, USA): 1992: 89
    • 12a DePue J. Collum D. J. Am. Chem. Soc. 1988; 110: 5518
    • 12b Galiano-Roth A. Michaelides E. Collum D. J. Am. Chem. Soc. 1988; 110: 2658
    • 12c Ma Y. Stivala C. Wright A. Hayton T. Liang J. Keresztes I. Lobkovsky E. Collum D. Zakarian A. J. Am. Chem. Soc. 2013; 135: 16853
    • 12d Bruneau AM. Liou L. Collum D. J. Am. Chem. Soc. 2014; 136: 2885
    • 13a Reich H. Chem. Rev. 2013; 113: 7130
    • 13b Li D. Keresztes I. Hopson R. Williard PG. Acc. Chem. Res. 2009; 42: 270
    • 13c Harrison-Marchand A. Mongin F. Chem. Rev. 2013; 113: 7470
    • 14a Desjardins S. Flinois K. Oulyadi H. Davoust D. Giessner-Prettre C. Parisel O. Maddaluno J. Organometallics 2003; 22: 4090
    • 14b Pate F. Harrison-Marchand A. Maddaluno J. Organometallics 2008; 27: 3564
    • 14c Hamdoun G. Sebban M. Tognetti V. Harrison-Marchand A. Joubert L. Maddaluno J. Oulyadi H. Organometallics 2015; 34: 1932
    • 14d Hamdoun G. Gouilleux B. Sebban M. Barozzino-Consiglio G. Harrison-Marchand A. Giraudeau P. Maddaluno J. Oulyadi H. Chem. Commun. 2017; 53: 220
    • 15a Eppers O. Günther H. Klein K.-D. Maercker A. Magn. Reson. Chem. 1991; 29: 1065
    • 15b Günther H. Eppers O. Hausmann H. Hüls D. Mons H.-E. Klein K.-D. Maercker A. Helv. Chim. Acta 1995; 78: 1913
  • 16 Günther H. Moskau D. Dujardin R. Maercker A. Tetrahedron Lett. 1986; 27: 2251
  • 17 Moskau D. Brauers F. Günther H. Maercker A. J. Am. Chem. Soc. 1987; 109: 5532
  • 18 Eppers O. Fox T. Günther H. Helv. Chim. Acta 1992; 75: 883
  • 19 Gschwind RM. Xie X. Rajamohanan PR. Auel C. Boche G. J. Am. Chem. Soc. 2001; 123: 7299
  • 20 Bauer W. Fiegel M. Müller G. Schleyer P. vR. J. Am. Chem. Soc. 1988; 110: 6033
  • 21 Arvidsson PI. Ahlberg P. Hilmersson G. Chem. Eur. J. 1999; 5: 1348
  • 22 Cohen Y. Avram L. Frish L. Angew. Chem. Int. Ed. 2005; 44: 520
  • 23 Sorland GH. Aksnes D. Magn. Reson. Chem. 2002; 40: S139
  • 24 Viel S. Capitani D. Mannina L. Segre AL. Biomacromolecules 2003; 4: 1843
    • 25a Li D. Kagan G. Hopson R. Williard PG. J. Am. Chem. Soc. 2009; 131: 5627
    • 25b Liu J. Li D. Sun C. Williard PG. J. Org. Chem. 2008; 73: 4045
    • 25c Jacobson MA. Keresztes I. Hopson R. Williard PG. J. Am. Chem. Soc. 2005; 127: 4965
    • 25d Li D. Sun C. Williard PG. J. Am. Chem. Soc. 2008; 130: 11726
    • 25e Li D. Hopson R. Li W. Liu J. Williard PG. Org. Lett. 2008; 10: 909
    • 25f Guang J. Liu QP. Hopson R. Williard PG. J. Am. Chem. Soc. 2015; 137: 7347
    • 26a Armstrong DR. Kennedy AR. Mulvey RE. Parkinson JA. Robertson SD. Chem. Sci. 2012; 3: 2700
    • 26b Armstrong DR. Garcia-Alvarez P. Kennedy AR. Mulvey RE. Parkinson J. Angew. Chem. Int. Ed. 2010; 49: 3185
    • 26c Lecachey B. Oulyadi H. Lameiras P. Harrison-Marchand A. Gérard H. Maddaluno J. J. Org. Chem. 2010; 75: 5976
  • 27 Kagan G. Li W. Hopson R. Williard PG. Org. Lett. 2010; 12: 520
    • 28a Mukaiyama T. Soai K. Sato T. Shimizu H. Suzuki K. J. Am. Chem. Soc. 1979; 101: 1455
    • 28b Eleveld MB. Hogeveen H. Tetrahedron Lett. 1984; 25: 5187
    • 28c Mazaleyrat J.-P. Cram DJ. J. Am. Chem. Soc. 1981; 103: 4585
    • 28d Kanoh S. Muramoto H. Maeda K. Kawaguchi N. Motoi M. Suda H. Bull. Chem. Soc. Jpn. 1988; 61: 2244
    • 28e Organolithiums in Enantioselective Synthesis. In Topics in Organometallic Chemistry. Vol. 5. Hodgson DM. Springer; New York: 2003
    • 28f Harrison-Marchand A. Valnot J.-Y. Corruble A. Duguet N. Oulyadi H. Desjardins S. Fressigné C. Maddaluno J. Pure Appl. Chem. 2006; 78: 321
    • 28g Luderer MR. Bailey WF. Luderer MR. Fair JD. Dancer RJ. Sommer MB. Tetrahedron: Asymmetry 2009; 20: 981
    • 29a Corruble A. Valnot J.-Y. Maddaluno J. Duhamel P. Tetrahedron: Asymmetry 1997; 8: 1519
    • 29b Flinois K. Yuan Y. Bastide C. Harrison-Marchand A. Maddaluno J. Tetrahedron 2002; 58: 4707
    • 29c Yuan Y. Harrison-Marchand A. Maddaluno J. Synlett 2005; 1555
  • 30 Corruble A. Valnot JY. Maddaluno J. Prigent Y. Davoust D. Duhamel P. J. Am. Chem. Soc. 1997; 119: 10042
  • 31 Corruble A. Davoust D. Desjardins S. Fressigné C. Giessner-Prettre C. Harrison-Marchand A. Houte H. Lasne M.-C. Maddaluno J. Oulyadi H. Valnot J.-Y. J. Am. Chem. Soc. 2002; 124: 15267
    • 32a McGarrity JF. Ogle CA. Brich Z. Loosli H.-R. J. Am. Chem. Soc. 1985; 107: 1810
    • 32b Jones A. Sanders A. Bevan M. Reich H. J. Am. Chem. Soc. 2007; 129: 3492
  • 33 Barozzino Consiglio G. Queval P. Harrison-Marchand A. Mordini A. Lohier JF. Delacroix O. Gaumont AC. Gérard H. Maddaluno J. Oulyadi H. J. Am. Chem. Soc. 2011; 133: 6472
  • 34 Cazzaniga L. Cohen RE. Macromolecules 1989; 22: 4125
  • 35 Hamdoun G. Sebban M. Cossoul E. Harrison-Marchand A. Maddaluno J. Oulyadi H. Chem. Commun. 2014; 50: 4073
  • 36 Collum DB. McNeil AJ. Ramirez A. Angew. Chem. Int. Ed. 2007; 46: 3002
  • 37 Carbone G. O’Brien P. Hilmersson G. J. Am. Chem. Soc. 2010; 132: 15445
  • 38 Barozzino-Consiglio G. Hamdoun G. Fressigne C. Harrison-Marchand A. Maddaluno J. Oulyadi H. Chem. Eur. J. 2017; 23: 12475