Synthesis 2018; 50(14): 2707-2720
DOI: 10.1055/s-0037-1610153
short review
© Georg Thieme Verlag Stuttgart · New York

Approaches for Performing Reductions under Continuous-Flow Conditions

Department of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa   Email: [email protected]
,
Nicole C. Neyt
Department of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa   Email: [email protected]
› Author Affiliations
This work was supported by the National Research Foundation (NRF) of South Africa (grant number 87893), the University of Pretoria and Pelchem Pty Ltd.
Further Information

Publication History

Received: 05 March 2018

Accepted after revision: 18 April 2018

Publication Date:
18 June 2018 (online)


Abstract

A concise overview of approaches to perform reductions of various functionalities including aldehydes, ketones, esters, imines, ­nitriles, nitro groups, alkenes and alkynes under continuous-flow conditions are highlighted and discussed in this short review.

1 Introduction

2 Reduction of Aldehydes, Ketones and Esters

3 Reduction of Imines and Nitriles

4 Reduction of Nitro Groups

5 Reduction of Alkenes

6 Partial Reduction of Alkynes

7 Conclusion

 
  • References

    • 1a Ley SV. Fitzpatrick DE. Ingham RJ. Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
    • 1b Ley SV. Fitzpatrick DE. Myers RM. Battilocchio C. Ingham RJ. Angew. Chem. Int. Ed. 2015; 54: 10122
  • 2 Plutschack MB. Pieber B. Gilmore K. Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 3a Jas G. Kirschning A. Chem. Eur. J. 2003; 9: 5708
    • 3b Smith CD. Baxendale IR. Tranmer GK. Baumann M. Smith SC. Lewthwaite RA. Ley SV. Org. Biomol. Chem. 2007; 5: 1562
    • 3c Mercadante MA. Leadbeater NE. Org. Biomol. Chem. 2011; 9: 6575
  • 4 Gilmore K. Vukelic S. McQuade DT. Koksch B. Seeberger PH. Org. Process Res. Dev. 2014; 18: 1771
  • 5 Cossar PJ. Hizartzidis L. Simone MI. McCluskey A. Gordon CP. Org. Biomol. Chem. 2015; 13: 7119
  • 6 Kirschning A. Monenschein H. Wittenberg R. Angew. Chem. Int. Ed. 2001; 40: 650
  • 7 Mandala D. Chada S. Watts P. Org. Biomol. Chem. 2017; 15: 3444
  • 8 Sedelmeier J. Ley SV. Baxendale IR. Green Chem. 2009; 11: 683
  • 9 Matsuda T. Watanabe K. Kamitanaka T. Harada T. Nakamura K. Chem. Commun. 2003; 1198
  • 10 De Angelis S. De Renzo M. Carlucci C. Degennaro L. Luisi R. Org. Biomol. Chem. 2016; 14: 4304
  • 11 Ahmed-Omer B. Sanderson AJ. Org. Biomol. Chem. 2011; 9: 3854
  • 12 Ballerini E. Maggi R. Pizzo F. Piermatti O. Gelman D. Vaccaro L. Org. Process Res. Dev. 2016; 20: 474
  • 13 Burns NZ. Baran PS. Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854
  • 14 Webb D. Jamison TF. Org. Lett. 2012; 14: 568
  • 15 Webb D. Jamison TF. Org. Lett. 2012; 14: 2465
  • 16 Newton S. Carter CF. Pearson CM. Alves LD. Lange H. Thansandote P. Ley SV. Angew. Chem. Int. Ed. 2014; 53: 4915
  • 17 Fukuyama T. Chiba H. Kuroda H. Takigawa T. Kayano A. Tagami K. Org. Process Res. Dev. 2016; 20: 503
  • 18 Munoz JD. Alcazar J. de la Hoz A. Diaz-Ortiz A. Eur. J. Org. Chem. 2012; 260
  • 19 Fan XL. Sans V. Yaseneva P. Plaza DD. Williams J. Lapkin A. Org. Process Res. Dev. 2012; 16: 1039
  • 20 Saaby S. Knudsen KR. Ladlow M. Ley SV. Chem. Commun. 2005; 2909
  • 21 Fernandes SD. Porta R. Barrulas PC. Puglisi A. Burke AJ. Benaglia M. Molecules 2016; 21: 1182
  • 22 Artiukha EA. Nuzhdin AL. Bukhtiyarova GA. Zaytsev SY. Plyusnin PE. Shubin YV. Bukhtiyarov VI. Catal. Sci. Technol. 2015; 5: 4741
  • 23 Liu J. Fitzgerald AE. Mani NS. Synthesis 2012; 44: 2469
  • 24 Ducry L. Roberge DM. Org. Process Res. Dev. 2008; 12: 163
  • 25 Munoz JD. Alcazar J. de la Hoz A. Diaz-Ortiz A. Tetrahedron Lett. 2011; 52: 6058
  • 26 Sharma SK. Lynch J. Sobolewska AM. Plucinski P. Watson RJ. Williams JM. J. Catal. Sci. Technol. 2013; 3: 85
    • 27a Guttieri MJ. Maier WF. J. Org. Chem. 1984; 49: 2875
    • 27b Stiles M. Finkbeiner HL. J. Am. Chem. Soc. 1959; 81: 505
    • 27c Lehmann J. Jiang N. Behncke A. Arch. Pharm. 1993; 326: 813
    • 27d Hollinshead SP. Trudell ML. Skolnick P. Cook JM. J. Med. Chem. 1990; 33: 1062
    • 27e Secrist JA. Logue MW. J. Org. Chem. 1972; 37: 335
  • 28 UNIQSIS Flow Chemistry Page, http://www.uniqsis.com/fcApplications.aspx (accessed May 25, 2018).
  • 29 Cantillo D. Baghbanzadeh M. Kappe CO. Angew. Chem. Int. Ed. 2012; 51: 10190
  • 30 Glasnov TN. Kappe CO. Adv. Synth. Catal. 2010; 352: 3089
  • 31 Moghaddam MM. Pieber B. Glasnov T. Kappe CO. ChemSusChem 2014; 7: 3122
  • 32 Hartwig J. Ceylan S. Kupracz L. Coutable L. Kirschning A. Angew. Chem. Int. Ed. 2013; 52: 9813
  • 33 Neyt NC. Riley DL. React. Chem. Eng. 2018; 3: 17
  • 34 Tsubogo T. Oyamada H. Kobayashi S. Nature 2015; 520: 329
  • 35 Porta R. Puglisi A. Colombo G. Rossi S. Benaglia M. Beilstein J. Org. Chem. 2016; 12: 2614
  • 36 Mak XY. Laurino P. Seeberger PH. Beilstein J. Org. Chem. 2009; 5: No. 19
  • 37 Jones RV. Godorhazy L. Varga N. Szalay D. Urge L. Darvas F. J. Comb. Chem. 2006; 8: 110
  • 38 Carter CF. Baxendale IR. O’Brien M. Pavey JB. J. Ley SV. Org. Biomol. Chem. 2009; 7: 4594
  • 39 O’Brien M. Taylor N. Polyzos A. Baxendale IR. Ley SV. Chem. Sci. 2011; 2: 1250
  • 40 Ouchi T. Battilocchio C. Hawkins JM. Ley SV. Org. Process Res. Dev. 2014; 18: 1560
    • 41a Cooper CG. F. Lee ER. Silva RA. Bourque AJ. Clark S. Katti S. Nivorozhkin V. Org. Process Res. Dev. 2012; 16: 1090
    • 41b Carter CF. Baxendale IR. Pavey JB. J. Ley SV. Org. Biomol. Chem. 2010; 8: 1588
  • 42 Fan X. Sans V. Sharma SK. Plucinski PK. Zaikovskii VA. Wilson K. Tennison SR. Kozynchenko A. Lapkin AA. Catal. Sci. Technol. 2016; 6: 2387
  • 43 Osako T. Torii K. Tazawa A. Uozumi Y. RSC Adv. 2015; 5: 45760
  • 44 Hudson R. Hamasaka G. Osako T. Yamada YM. A. Li CJ. Uozumi Y. Moores A. Green Chem. 2013; 15: 2141
    • 45a Bakker JJ. W. Zieverink MM. P. Reintjens RW. E. G. Kapteijn F. Moulijn JA. Kreutzer MT. ChemCatChem 2011; 3: 1155
    • 45b Carter CF. Lange H. Sakai D. Baxendale IR. Ley SV. Chem. Eur. J. 2011; 17: 3398
    • 45c Brasholz M. Macdonald JM. Saubern S. Ryan JH. Holmes AB. Chem. Eur. J. 2010; 16: 11471
  • 46 Liguori F. Barbaro P. J. Catal. 2014; 311: 212
  • 47 Liguori F. Barbaro P. Catal. Sci. Technol. 2014; 4: 3835
  • 48 Vile G. Almora-Barrios N. Mitchell S. Lopez N. Perez-Ramirez J. Chem. Eur. J. 2014; 20: 5926
  • 49 Vile G. Perez-Ramirez J. Nanoscale 2014; 6: 13476
  • 50 Kleinke AS. Jamison TF. Org. Lett. 2013; 15: 710