Synthesis 2018; 50(17): 3395-3401
DOI: 10.1055/s-0037-1610138
special topic
© Georg Thieme Verlag Stuttgart · New York

Photoorganocatalytic Atom Transfer Radical Addition of Bromoacetonitrile to Aliphatic Olefins

Errika Voutyritsa
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
,
Nikolaos F. Nikitas
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
,
Mary K. Apostolopoulou
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
,
Anna Dimitra D. Gerogiannopoulou
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
,
Christoforos G. Kokotos*
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
› Author Affiliations
Further Information

Publication History

Received: 25 February 2018

Accepted after revision: 09 April 2018

Publication Date:
29 May 2018 (eFirst)

Published as part of the Special Topic Photoredox Methods and their Strategic Applications in Synthesis

Abstract

A green and cheap protocol for the photocatalytic atom transfer radical addition (ATRA) of bromoacetonitrile to aliphatic alkenes is presented. The use of benzoin methyl ehter as the photocatalyst and irradiation using a household lightbulb leads to a highly useful synthetic method for the conversion of a wide range of substituted aliphatic olefins into the corresponding bromonitriles.

Supporting Information

 
  • References

  • 2 Dneprovskii AS. Kasatochkin AN. Boyarskii VP. Ermoshkin AA. Yakovlev AA. Russ. J. Org. Chem. 2006; 42: 1120
    • 3a Severin K. Chimia 2012; 66: 386
    • 3b Severin K. Curr. Org. Chem. 2006; 10: 217
    • 3c Nagashima H. Seki K. Ozaki N. Wakamatsu H. Itoh K. Tomo Y. Tsuji J. J. Org. Chem. 1990; 55: 985
  • 4 Gao Y. Zhang PH. Ji L. Tang G. Zhao Y. ACS Catal. 2017; 7: 186
  • 5 Boivin J. Youfsi M. Zard SZ. Tetrahedron Lett. 1994; 35: 5629
    • 6a Liu Q. Chen C. Tong X. Tetrahedron Lett. 2015; 56: 4483
    • 6b Monks BM. Cook SP. Angew. Chem. Int. Ed. 2013; 52: 14214
    • 7a Gu X. Li X. Yang Q. Li P. Yao Y. Chem. Eur. J. 2013; 19: 11878
    • 7b Nguyen JD. Tucker JW. Konieczynska MD. Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160

      For initial contributions, see:
    • 8a Nicewicz D. MacMillan DW. C. Science 2008; 322: 77
    • 8b Nagib DA. Scott ME. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875

      For initial contributions, see:
    • 9a Ischay MA. Anzovino ME. Du J. Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 9b Du J. Yoon TP. J. Am. Chem. Soc. 2009; 131: 14064

      For initial contributions, see:
    • 10a Narayanam JM. R. Tucker JW. Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
    • 10b Condie AG. Gonzalez-Gomez JC. Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464

      For selected examples and reviews, see:
    • 11a Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
    • 11b Tucker JW. Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 11c Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 11d Scubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 11e Romero NA. Nicewicz DA. Chem Rev. 2016; 116: 10075
    • 11f Karkas MD. Porco JA. Jr. Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 11g Ravelli D. Protti S. Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 11h Cambie D. Bottecchia C. Straathof NJ. W. Hessel V. Noel T. Chem. Rev. 2016; 116: 10276
    • 12a For selected examples, see: Bauer A. Westkämper F. Grimme S. Bach T. Nature 2005; 436: 1139
    • 12b Coote SC. Bach T. J. Am. Chem. Soc. 2013; 135: 14948
    • 12c Brimioulle R. Bach T. Science 2013; 342: 840

      For selected examples, see:
    • 13a Nicewicz D. Nguyen T. ACS Catal. 2013; 4: 355
    • 13b Nguyen T. Manohar N. Nicewicz D. Angew. Chem. Int. Ed. 2014; 53: 6198
    • 13c Romero N. Margrey K. Tay N. Nicewicz D. Science 2015; 349: 1326
    • 13d Griffin J. Zeller M. Nicewicz D. J. Am. Chem. Soc. 2015; 137: 11340

      For selected examples, see:
    • 14a Arceo E. Jurberg ID. Álvarez-Fernández A. Melchiorre P. Nat. Chem. 2013; 5: 750
    • 14b Silvi M. Arceo E. Jurberg ID. Cassani C. Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
    • 14c Woźniak Ł. Murphy JJ. Melchiorre P. J. Am. Chem. Soc. 2015; 137: 5678
    • 14d Silvi M. Verrier C. Rey YP. Buzzetti L. Melchiorre P. Nat. Chem. 2017; 9: 868
  • 15 Sarges R. Hank RF. Blake JF. Bordner J. Bussolotti DL. Hargrove DM. Treadway JL. Gibbs EM. J. Med. Chem. 1996; 39: 4783
  • 16 Geies AA. Collect. Czech. Chem. Commun. 1992; 57: 1565
  • 17 Yorimitsu H. Shinokubo H. Matsubara S. Oshima K. J. Org. Chem. 2001; 66: 7776
  • 18 Yi H. Zhang X. Qin C. Liao Z. Liu J. Lei A. Adv. Synth. Catal. 2014; 356: 2873
  • 19 Fumagalli G. Boyd S. Greaney MF. Tetrahedron Lett. 2015; 56: 2571
  • 20 Voutyritsa E. Triandafillidi I. Kokotos CG. ChemCatChem 2018; DOI: ;in press; 10.1002/cctc.201800110.
  • 21 Arceo E. Montroni E. Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 12064
  • 22 Magagnano G. Gualandi A. Marchini M. Mengozzi L. Ceroni P. Cozzi PG. Chem. Commun. 2017; 53: 1591
    • 23a Papadopoulos GN. Limnios D. Kokotos CG. Chem. Eur. J. 2014; 20: 13811
    • 23b Papadopoulos GN. Kokotos CG. Chem. Eur. J. 2016; 22: 6964
    • 23c Papadopoulos GN. Kokotos CG. J. Org. Chem. 2016; 81: 7023
    • 23d Limnios D. Kokotos CG. Adv. Synth. Catal. 2017; 359: 323
    • 23e Koutoulogenis GS. Kokotou MG. Voutyritsa E. Limnios D. Kokotos CG. Org. Lett. 2017; 19: 1760
    • 23f Kaplaneris N. Bisticha A. Papadopoulos GN. Limnios D. Kokotos CG. Green Chem. 2017; 19: 4451
    • 23g Triantafillidi I. Kokotou MG. Kokotos CG. Org. Lett. 2018; 20: 36
    • 23h Sideri IK. Voutyritsa E. Kokotos CG. Synlett 2018; 29: in press, DOI: 10.1055/s-0036-1591837