Synthesis 2018; 50(18): 3589-3602
DOI: 10.1055/s-0037-1610135
short review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Enantioselective Reactions of Organo­magnesium Reagents Mediated by Chiral Ligands

Hélène Guyon
IMMM – UMR 6283 CNRS, Le Mans Université, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France   Email: Anne.Boussonniere@univ-lemans.fr   Email: Anne-Sophie.Castanet@univ-lemans.fr
,
IMMM – UMR 6283 CNRS, Le Mans Université, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France   Email: Anne.Boussonniere@univ-lemans.fr   Email: Anne-Sophie.Castanet@univ-lemans.fr
,
IMMM – UMR 6283 CNRS, Le Mans Université, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France   Email: Anne.Boussonniere@univ-lemans.fr   Email: Anne-Sophie.Castanet@univ-lemans.fr
› Author Affiliations
This work was supported by the French Ministry of Higher Education, Research and Innovation (H. G. Ph.D. fellowship), the CNRS and Le Mans Université.
Further Information

Publication History

Received: 28 February 2018

Accepted after revision: 11 April 2018

Publication Date:
20 June 2018 (eFirst)

Published as part of the Special Section on the Main Group Metal Chemistry Symposium

Abstract

Organomagnesium reagents are among the most important reagents in organic chemistry because of their great utility in forming carbon–carbon bonds. Although most enantioselective reactions using these organometallics involve transmetalation, the past decade has witnessed impressive advances in direct chiral-ligand-mediated reactions of organomagnesiums­. This short review presents an overview of these achievements in enantioselective nucleophilic additions and substitutions.

1 Introduction

2 Enantioselective Nucleophilic Additions

2.1 Addition to C=O Bonds

2.2 Addition to C=N Bonds

2.3 Addition to C=C Bonds

3 Enantioselective Substitution Reactions

3.1 Sulfoxide–Magnesium Exchange

3.2 Desymmetrization via Anhydride Opening

3.3 Asymmetric Allylic Alkylation (AAA)

4 Conclusion

 
  • References

  • 1 Grignard V. C. R. Acad. Sci. Paris 1900; 130: 1322
  • 3 Busch FR. De Antonis DM. In Grignard Reagents: New Developments . Richey HG. Wiley; Chichester: 2000: 165-183
    • 4a Mulvey RE. Robertson SD. Top. Organomet. Chem. 2013; 45: 103
    • 4b Knochel P. Schade MA. Bernhardt S. Manolikakes G. Metzger A. Piller FM. Rohbogner CJ. Mosrin M. Beilstein J. Org. Chem. 2011; 7: 1261
    • 4c Benischke AD. Ellwart M. Becker MR. Knochel P. Synthesis 2016; 48: 1101
    • 4d Knochel P. Gavryushin A. Brade K. In The Chemistry of Organomagnesium Compounds . Rappoport Z. Marek I. Wiley; Chichester: 2008: 511-593
    • 5a Kosar M. In Handbook of Grignard Reagents . Silverman GS. Rakita PE. Marcel Dekker; New York: 1996: 441-454
    • 5b Shirakawa E. Watabe R. Murakami T. Hayashi T. Chem. Commun. 2013; 49: 5219
    • 5c Murarka S. Wertz S. Studer A. Chimia 2012; 66: 413
  • 7 Roberts JT. In Handbook of Grignard Reagents . Silverman GS. Rakita PE. Marcel Dekker; New York: 1996: 557-576

    • For Ti- or Cu-promoted enantioselective additions of Grignard reagents to carbonyl compounds, see:
    • 10a Collados JF. Solà R. Harutyunyan SR. Maciá B. ACS Catal. 2016; 6: 1952
    • 10b Pellissier H. Tetrahedron 2015; 71: 2487

    • For Cu-catalyzed asymmetric conjugate addition and allylic alkylation with Grignard reagents, see:
    • 10c Harutyunyan SR. den Hartog T. Geurts K. Minnaard AJ. Feringa BL. Chem. Rev. 2008; 108: 2824

    • For enantioselective transition-metal-catalyzed cross-coupling reactions of organomagnesium reagents, see:
    • 10d Cherney AH. Kadunce NT. Reisman SE. Chem. Rev. 2015; 115: 9587
  • 11 Pellissier H. Org. Biomol. Chem. 2017; 15: 4750
  • 12 Nicolaou KC. Montagnon T. Molecules That Changed the World . Wiley–VCH; Weinheim: 2008
  • 13 Huryn DM. In Comprehensive Organic Synthesis II . Knochel P. Molander GA. Elsevier; Amsterdam: 2014. 2nd ed., Vol. 1 1-26
    • 14a Cohen HL. Wright GF. J. Org. Chem. 1953; 18: 432
    • 14b Allentoff N. Wright GF. J. Org. Chem. 1957; 22: 1
  • 15 Luderer MR. Bailey WF. Luderer MR. Fair JD. Dancer RJ. Sommer MB. Tetrahedron: Asymmetry 2009; 20: 981
  • 16 Mukaiyama T. Soai K. Sato T. Shimizu H. Suzuki K. J. Am. Chem. Soc. 1979; 101: 1455
  • 17 Noyori R. Suga S. Kawai K. Okada S. Kitamura M. Pure Appl. Chem. 1988; 60: 1597
  • 18 Zadel G. Breitmaier E. Chem. Ber. 1994; 127: 1323
  • 19 Yong KH. Taylor NJ. Chong JM. Org. Lett. 2002; 4: 3553
  • 20 Luk’yanenko NG. Lobach AV. Leus ON. Russ. J. Org. Chem. 2004; 40: 273
    • 21a Tomioka K. Nakajima M. Koga K. Chem. Lett. 1987; 16: 65
    • 21b Nakajima M. Tomioka K. Koga K. Tetrahedron 1993; 49: 9751
  • 23 Inch TD. Lewis GJ. Sainsbury GL. Sellers DJ. Tetrahedron Lett. 1969; 10: 3657
    • 24a Weber B. Seebach D. Angew. Chem. Int. Ed. 1992; 31: 84
    • 24b Weber B. Seebach D. Tetrahedron 1994; 50: 6117
    • 25a Catel D. Chevallier F. Mongin F. Gros PC. Eur. J. Org. Chem. 2012; 53
    • 25b Catel D. Payen O. Chevallier F. Mongin F. Gros PC. Tetrahedron 2012; 68: 4018
  • 26 For a recent review on bimetallic combinations for dehalogenative metalation, see: Tilly D. Chevallier F. Mongin F. Gros PC. Chem. Rev. 2014; 114: 1207
  • 27 Francos J. Gros PC. Kennedy AR. O’Hara CT. Organometallics 2015; 34: 2550
  • 28 Masternak J. Zienkiewicz-Machnik M. Kowalik M. Jabłońska-Wawrzycka A. Rogala P. Adach A. Barszcz B. Coord. Chem. Rev. 2016; 242
  • 29 Payen O. Chevallier F. Mongin F. Gros PC. Tetrahedron: Asymmetry 2012; 23: 1678
  • 30 Osakama K. Nakajima M. Org. Lett. 2016; 18: 236
  • 31 Bieszczad B. Gilheany DG. Angew. Chem. Int. Ed. 2017; 56: 4272
  • 32 Bieszczad B. Gilheany DG. Org. Biomol. Chem. 2017; 15: 6483
  • 33 Chiral Amine Synthesis: Methods, Developments and Applications. Nugent TC. Wiley-VCH; Weinheim: 2010
  • 34 Ukaji Y. Hatanaka T. Ahmed A. Inomata K. Chem. Lett. 1993; 22: 1313
  • 35 Merchán FL. Merino P. Rojo I. Tejero T. Dondoni A. Tetrahedron: Asymmetry 1996; 7: 667
  • 36 Taylor RD. MacCoss M. Lawson AD. G. J. Med. Chem. 2014; 57: 5845
  • 37 Andersson H. Banchelin TS.-L. Das S. Gustafsson M. Olsson R. Almqvist F. Org. Lett. 2010; 12: 284
    • 38a Andersson H. Olsson R. Almqvist F. Org. Biomol. Chem. 2011; 9: 337
    • 38b Barange DK. Johnson MT. Cairns AG. Olsson R. Almqvist F. Org. Lett. 2016; 18: 6228
  • 39 Hussain M. Banchelin TS.-L. Andersson H. Olsson R. Almqvist F. Org. Lett. 2013; 15: 54
    • 40a Sugimoto H. Nakamura S. Hattori M. Ozeki S. Shibata N. Toru T. Tetrahedron Lett. 2005; 46: 8941
    • 40b Nakamura S. Nakashima H. Sugimoto H. Sano H. Hattori M. Shibata N. Toru T. Chem. Eur. J. 2008; 14: 2145
  • 41 Sibi MP. Asano Y. J. Am. Chem. Soc. 2001; 123: 9708
  • 42 Murakami K. Yorimitsu H. Beilstein J. Org. Chem. 2013; 9: 278
  • 43 Liu X. Fox JM. J. Am. Chem. Soc. 2006; 128: 5600
    • 45a Otocka S. Kwiatkowska M. Madalińska L. Kiełbasiński P. Chem. Rev. 2017; 117: 4147
    • 45b Trost BM. Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
    • 46a Hampel T. Ruppenthal S. Sälinger D. Brückner R. Chem. Eur. J. 2012; 18: 3136
    • 46b Ruppenthal S. Brückner R. J. Org. Chem. 2015; 80: 897
  • 47 Ruppenthal S. Brückner R. Eur. J. Org. Chem. 2018; 89
  • 48 Sälinger D. Brückner R. Chem. Eur. J. 2009; 15: 6688
  • 49 Atodiresei I. Schiffers I. Bolm C. Chem. Rev. 2007; 107: 5683
  • 50 Shintani R. Fu GC. Angew. Chem. Int. Ed. 2002; 41: 1057
    • 51a Baslé O. Denicourt-Nowicki A. Crévisy C. Mauduit M. In Copper-Catalyzed Asymmetric Synthesis . Alexakis A. Krause N. Woodward S. Wiley-VCH; Weinheim: 2014: 85-126
    • 51b Alexakis A. Malan C. Lea L. Tissot-Croset K. Polet D. Falciola C. Chimia 2006; 60: 124
  • 52 For a recent review on NHC, see: Janssen-Muller D. Schlepphorst C. Glorius F. Chem. Soc. Rev. 2017; 46: 4845
  • 53 Lee Y. Hoveyda AH. J. Am. Chem. Soc. 2006; 128: 15604
  • 54 Lee Y. Li B. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 11625
  • 55 Jackowski O. Alexakis A. Angew. Chem. Int. Ed. 2010; 49: 3346
  • 56 Poblador Bahamonde AI. Halbert S. Eur. J. Org. Chem. 2017; 5935
  • 57 Latham CM. Blake AJ. Lewis W. Lawrence M. Woodward S. Eur. J. Org. Chem. 2012; 699
  • 58 Okamoto S. Ishikawa H. Shibata Y. Suhara Y.-i. Tetrahedron Lett. 2010; 51: 5704
  • 59 Levy J.-N. Latham CM. Roisin L. Kandziora N. Fruscia PD. White AJ. P. Woodward S. Fuchter MJ. Org. Biomol. Chem. 2012; 10: 512
  • 60 Grassi D. Dolka C. Jackowski O. Alexakis A. Chem. Eur. J. 2013; 19: 1466
  • 61 Grassi D. Alexakis A. Adv. Synth. Catal. 2015; 357: 3171
  • 62 Grassi D. Alexakis A. Org. Lett. 2012; 14: 1568
  • 63 Grassi D. Li H. Alexakis A. Chem. Commun. 2012; 48: 11404
  • 64 Grassi D. Alexakis A. Angew. Chem. Int. Ed. 2013; 52: 13642
  • 65 Grassi D. Alexakis A. Chem. Sci. 2014; 5: 3803