Synthesis 2018; 50(19): 3809-3824
DOI: 10.1055/s-0037-1610107
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Applications of Triethylsilane in Organic Synthesis

Veronika Ručilová
a  Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
,
Miroslav Soural*
b  Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic   Email: [email protected]
› Author Affiliations
This work was supported by the National Program of Sustainability (project LO1304).
Further Information

Publication History

Received: 06 April 2018

Accepted after revision: 11 May 2018

Publication Date:
02 July 2018 (online)


Abstract

The synthesis of pharmacologically relevant scaffolds is an important goal in modern organic chemistry. For this reason, the use of methodologies involving operationally simple procedures and easily handled reagents to chemoselectively and stereoselectively convert different functionalities has gained considerable attention. In this review, we summarize the latest trends in reductive reactions using triethyl­silane as the key reagent that provide synthetically interesting intermediates, coupling products and structures with control of the 3D architecture.

1 Introduction

2 Scenario A: Reduction of C–C Multiple Bonds

3 Scenario B: Reduction of Functional Groups

4 Scenario C: Reductive Coupling

5 Scenario D: Reductive Cyclization

6 Conclusion

 
  • References

    • 1a Yusuf SN. A. M. Ng YM. Ayub AD. Ngalim SH. Lim V. Polymers 2017; 9: 311
    • 1b Kicsak M. Bege M. Bereczki I. Csavas M. Herczeg M. Kupihar Z. Kovacs L. Borbas A. Herczegh P. Org. Biomol. Chem. 2016; 14: 3190
  • 2 Fry JL. Rahaim RJ. Jr. Maleczka RE. Jr. Triethylsilane . In Handbook of Reagents for Organic Synthesis: Reagents for Silicon-Mediated Organic Synthesis . Fuchs PL. John Wiley & Sons; Chichester: 2011: 506
  • 3 Ohta H. Miyoshi N. Sakata Y. Okamoto Y. Hayashi M. Watanabe Y. Tetrahedron Lett. 2015; 56: 2910
  • 4 Roque Pena JE. Alexanian EJ. Org. Lett. 2017; 19: 4413
  • 5 Liu H. Zhang Y. Wei R. Andolina G. Li X. J. Am. Chem. Soc. 2017; 139: 13420
  • 6 Zhang J. Zhang J. Kang Y. Shi J. Yao C. Synlett 2016; 27: 1587
    • 7a Feghali E. Carrot G. Thuery P. Genre C. Cantat T. Energy Environ. Sci. 2015; 8: 2734
    • 7b Rios P. Curado N. Lopez-Serrano J. Rodriguez A. Chem. Commun. 2016; 52: 2114
    • 8a Kim Y. Chang S. Angew. Chem. Int. Ed. 2016; 55: 218
    • 8b Guo W. Pleixats R. Shafir A. Parella T. Adv. Synth. Catal. 2015; 357: 89
  • 9 Wang XQ. Jia PJ. Liu SP. Yu W. Chin. Chem. Lett. 2011; 22: 931
  • 10 Poeylaut-Palena AA. Testero SA. Mata EG. Chem. Commun. 2011; 47: 1565
  • 11 Ma X. Herzon SB. Chem. Sci. 2015; 6: 6250
  • 12 Tuokko S. Pihko PM. Synlett 2016; 27: 1649
  • 13 Gabrielli S. Chiurchiú E. Sampaolesi S. Ballini R. Palmieri A. Synthesis 2017; 49: 2980
  • 14 Bender M. Schmidtmann M. Rullkötter J. Summons RE. Christoffers J. Eur. J. Org. Chem. 2013; 5934
    • 15a Verbitskiy EV. Slepukhin PA. Kravchenko MA. Skornyakov SN. Evstigneeva NP. Kungurov NV. Zil’berberg NV. Rusinov GL. Chupakhin ON. Charushin VN. Bioorg. Med. Chem. Lett. 2015; 25: 524
    • 15b Brimioulle R. Bach T. Angew. Chem. Int. Ed. 2014; 53: 12921
  • 16 Li Z. Tong R. Synthesis 2016; 48: 1630
  • 17 Rubottom GM. Vazquez MA. Pelegrina DR. Tetrahedron Lett. 1974; 15: 4319
    • 18a Králová P. Maloň M. Volná T. Ručilová V. Soural M. ACS Comb. Sci. 2017; 19: 670
    • 18b Králová P. Maloň M. Soural M. ACS Comb. Sci. 2017; 19: 770
  • 19 Ručilová V. Maloň M. Soural M. Eur. J. Org. Chem. 2018; 564
  • 20 Direnko DY. Drevko YB. Drevko BI. Heterocycl. Commun. 2016; 22: 227
  • 21 Wübbolt S. Oestreich M. Synlett 2017; 28: 2411
  • 22 Feghali E. Cantat T. Chem. Commun. 2014; 50: 862
    • 23a Keess S. Simonneau A. Oestreich M. Organometallics 2015; 34: 790
    • 23b Vasilikogiannaki E. Titilas I. Gryparis C. Louka A. Lykakis IN. Stratakis M. Tetrahedron 2014; 70: 6106
  • 24 Zheng J. Chevance S. Darcel C. Sortais JB. Chem. Commun. 2013; 49: 10010
  • 25 Corre Y. Rysak V. Capet F. Djukic JP. Agbossou-Niedercorn F. Michon C. Chem. Eur. J. 2016; 22: 14036
  • 26 Trajkovic M. Ferjancic Z. Saicic RN. Org. Biomol. Chem. 2011; 9: 6927
  • 27 Lucas KM. Kleman AF. Sadergaski LR. Jolly CL. Bollinger BS. Mackesey BL. McGrath NA. Org. Biomol. Chem. 2016; 14: 5774
  • 28 Khlebnikova TS. Piven’ Y. Isakova VG. Lakhvich FA. Russ. J. Org. Chem. 2012; 48: 1277
  • 29 Bream RN. Hulcoop DG. Gooding SJ. Watson SA. Blore C. Org. Process Res. Dev. 2012; 16: 2043
  • 30 Yan N. Chen K. Bai X. Bi L. Yao L. Chem. Cent. J. 2015; 9: 5
  • 31 Matsumura T. Nakada M. Tetrahedron Lett. 2014; 55: 1412
  • 32 Takale BS. Wang S. Zhang X. Feng X. Yu X. Jin T. Bao M. Yamamoto Y. Chem. Commun. 2014; 50: 14401
  • 33 Porwal D. Oestreich M. Eur. J. Org. Chem. 2016; 3307
  • 34 Mirza-Aghayan M. Boukherroub R. Rahimifard M. Appl. Organomet. Chem. 2013; 27: 174
  • 35 Porwal D. Oestreich M. Synthesis 2017; 49: 4698
  • 36 Saito K. Kondo K. Akiyama T. Org. Lett. 2015; 17: 3366
  • 37 Gómez-Infante A. Banuelos J. Valois-Escamilla I. Cruz-Cruz D. Prieto-Montero R. López-Arbeloa I. Arbeloa T. Peña-Cabrera E. Eur. J. Org. Chem. 2016; 5009
  • 38 Mack DJ. Guo B. Njardarson JT. Chem. Commun. 2012; 48: 7844
  • 39 Mirza-Aghayan M. Boukherroub R. Rahimifard M. Zadmard R. J. Iran. Chem. Soc. 2011; 8: 570
  • 40 Fedorov A. Toutov AA. Swisher NA. Grubbs RH. Chem. Sci. 2013; 4: 1640
  • 41 Hart A. Kelley SA. Harless T. Hood JA. Tagert M. Pigza JA. Tetrahedron Lett. 2017; 58: 3024
  • 42 Dhanju S. Blazejewski BW. Crich D. J. Org. Chem. 2017; 82: 5345
  • 43 D’Elia CS. Goudedranche S. Constantieux T. Bella M. Bonne D. Rodriguez J. Adv. Synth. Catal. 2017; 359: 3638
  • 44 Tangdenpaisal K. Chuayboonsong K. Ruchirawat S. Ploypradith P. J. Org. Chem. 2017; 82: 2672
    • 45a Drosos N. Morandi B. Angew. Chem. Int. Ed. 2015; 54: 8814
    • 45b Drosos N. Cheng G.-J. Ozkal E. Cacherat B. Thiel W. Morandi B. Angew. Chem. Int. Ed. 2017; 56: 13377
    • 46a Bender TA. Dabrowski JA. Gagné MR. ACS Catal. 2016; 6: 8399
    • 46b Chatterjee I. Porwal D. Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 3389
  • 47 Mahajan US. Godinde RR. Mandhare PN. Synth. Commun. 2011; 41: 2195
  • 48 Fujihara T. Cong C. Iwai T. Terao J. Tsuji Y. Synlett 2012; 23: 2389
  • 49 Noonan GM. Hayter BR. Campbell AD. Gorman TW. Partridge BE. Lamont GM. Tetrahedron Lett. 2013; 54: 4518
    • 50a Kordts N. Borner C. Panisch R. Saak W. Müller T. Organometallics 2014; 33: 1492
    • 50b Kordts N. Künzler S. Rathjen S. Sieling T. Großekappenberg H. Schmidtmann M. Müller T. Chem. Eur. J. 2017; 23: 10068
    • 50c Pan B. Gabbaï P. J. Am. Chem. Soc. 2014; 136: 9564
  • 51 Chaudhary P. Korde R. Gupta S. Sureshbabu P. Sabiah S. Kandasamy J. Adv. Synth. Catal. 2018; 360: 556
  • 52 Todd DP. Thompson BB. Nett AJ. Montgomery J. J. Am. Chem. Soc. 2015; 137: 12788
  • 53 Huang PQ. Lang QW. Wang AE. Zheng JF. Chem. Commun. 2015; 51: 1096
  • 54 Zheng JF. Qian XY. Huang PQ. Org. Chem. Front. 2015; 2: 927
  • 55 Parnes R. Pappo D. Org. Lett. 2015; 17: 2924
  • 56 Righi M. Topi F. Bartolucci S. Bedini A. Piersanti G. Spadoni G. J. Org. Chem. 2012; 77: 6351
  • 57 Han W. Liu B. Chen J. Zhou Q. Synlett 2017; 28: 835
  • 58 Jiang X. Wang JM. Zhang Y. Chen Z. Zhu YM. Ji SJ. Org. Lett. 2014; 16: 3492
  • 59 Inamoto Y. Nishimoto Y. Yasuda M. Baba A. Chem. Lett. 2013; 42: 1551
  • 60 Kuki S. Futamura T. Suzuki R. Yamamoto M. Minakawa M. Kawatsura M. Synlett 2015; 26: 1715
  • 61 Sakai N. Usui Y. Ikeda R. Konakahara T. Adv. Synth. Catal. 2011; 353: 3397
  • 62 Mineno T. Tsukagoshi R. Iijima T. Watanabe K. Miyashita H. Yoshimitsu H. Tetrahedron Lett. 2014; 55: 3765
  • 63 Kuethe JT. Janey JM. Truppo M. Arredondo J. Li T. Yong K. He S. Tetrahedron 2014; 70: 4563
  • 64 Savela R. Leino R. Synthesis 2015; 47: 1749
  • 65 Ghaffarzadeh M. Joghan SS. Faraji F. Tetrahedron Lett. 2012; 53: 203
  • 66 Pramanik S. Ghorai P. Org. Lett. 2014; 16: 2104
  • 67 Das BG. Ghorai P. Chem. Commun. 2012; 48: 8276
  • 68 Mirza-Aghayan M. Tavana MM. Rahimifard M. Boukherroub R. Appl. Organomet. Chem. 2014; 28: 113
  • 69 Zhang XL. Yu P. Wu YW. Wu QP. Zhang QS. J. Chem. Res. 2014; 38: 261
  • 70 Popp TA. Bracher F. Synthesis 2015; 47: 3333
  • 71 Vögerl K. Ong DN. Bracher F. Synthesis 2018; 50: 1323
  • 72 Sakai N. Asama S. Anai S. Konakahara T. Tetrahedron 2014; 70: 2027
  • 73 Li G. Xiao Q. Li C. Wang X. Yin D. Tetrahedron Lett. 2011; 52: 6827
  • 74 Yamada T. Saito K. Akiyama T. Adv. Synth. Catal. 2015; 358: 62
  • 75 Fu W. Nie M. Wang A. Cao Z. Tang W. Angew. Chem. Int. Ed. 2015; 54: 2520
  • 76 Zeng M. Murphy SK. Herzon SB. J. Am. Chem. Soc. 2017; 139: 16377
  • 77 Hayashi Y. Hoshimoto Y. Kumar R. Ohashi M. Ogoshi S. Chem. Commun. 2016; 52: 6237
  • 78 Hayashi Y. Hoshimoto Y. Kumar R. Ohashi M. Ogoshi S. Chem. Lett. 2017; 46: 1096
  • 79 Medley JW. Movassaghi M. Org. Lett. 2013; 15: 3614
  • 80 Kuga T. Sasano Y. Tomizawa M. Shibuya M. Iwabuchi Y. Synthesis 2018; 50: 1820
  • 81 Moskalenko AI. Boev VI. Russ. J. Org. Chem. 2014; 50: 1117
  • 82 Shibuya M. Fujita S. Abe M. Yamamoto Y. ACS Catal. 2017; 7: 2848
  • 83 Fujita S. Shibuya M. Yamamoto Y. Synthesis 2017; 49: 4199
  • 84 Sultane PR. Bhat RG. J. Org. Chem. 2012; 77: 11349