Synthesis 2018; 50(15): 2891-2896
DOI: 10.1055/s-0037-1610038
special topic
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Radical Polynitration of Arylboronic Acids: Synthesis of Polynitrophenols

Qi Zhang
a  Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   Email: bixh507@nenu.edu.cn
,
Kaki Raveendra Babu
a  Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   Email: bixh507@nenu.edu.cn
,
Zhouliang Huang
b  College of Life Sciences, Jilin University, 2699 Qianjin Street, 130012 Changchun, P. R. of China
,
Jinna Song*
b  College of Life Sciences, Jilin University, 2699 Qianjin Street, 130012 Changchun, P. R. of China
,
Xihe Bi  *
a  Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   Email: bixh507@nenu.edu.cn
c  State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, P. R. of China
› Author Affiliations
This work was supported by the NSFC (21522202, 21502017, 21702028).
Further Information

Publication History

Received: 26 February 2018

Accepted after revision: 02 May 2018

Publication Date:
13 June 2018 (eFirst)

Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

We report a visible light-assisted one-pot method for the synthesis of polynitrophenols through radical tandem hydroxylation and nitration of arylboronic acids by utilizing copper(II) nitrate tri­hydrate as the nitro source. This method features mild conditions, a simple procedure, and good functional group tolerance. Compared to conventional methods, this work provides a straightforward approach for the polynitration of aromatic compounds.

Supporting Information

 
  • References

    • 1a Ciamician G. Science 1912; 36: 385
    • 1b Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
    • 1c Ravelli D. Dondi D. Fagnoni M. Albini A. Chem. Soc. Rev. 2009; 38: 1999
    • 1d Gust D. Moore TA. Moore AL. Acc. Chem. Res. 1993; 26: 198
  • 2 Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 3a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 3b Hopkinson MN. Sahoo B. Li JL. Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 3c Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 4a Noble A. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 4b Terrett JA. Clift MD. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 6858
    • 4c Pirnot MT. Rankic DA. Martin DB. C. MacMillan DW. C. Science 2013; 339: 1593
    • 4d Nagib DA. Scott ME. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
    • 4e Nicewicz DA. MacMillan DW. C. Science 2008; 322: 77
    • 5a Du J. Yoon TP. J. Am. Chem. Soc. 2009; 131: 14604
    • 5b Ischay MA. Anzovino ME. Du J. Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 6a Konieczynska MD. Dai C. Stephenson CR. J. Org. Biomol. Chem. 2012; 10: 4509
    • 6b Dai C. Narayanam JM. R. Stephenson CR. J. Nat. Chem. 2011; 3: 140
    • 6c Condie AG. González-Gómez JC. Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 6d Tucker JW. Narayanam JM. R. Krabbe SW. Stephenson CR. J. Org. Lett. 2010; 12: 368
    • 6e Narayanam JM. R. Tucker JW. Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
    • 7a Booth G. Nitro Compounds, Aromatic. In Ullmann’s Encyclopedia of Industial Chemistry. Wiley-VCH; Weinheim: 2000
    • 7b Heaney F. Synthesis 2001; 2528
    • 7c Schlosser M. Ruzziconi R. Synthesis 2010; 2111
    • 7d Schofield K. Aromatic Nitration . Cambridge University Press; Cambridge: 1980
    • 7e Chu W. Zhou D. Gaba V. Liu J. Li S. Peng X. Xu J. Dhavale D. Bagchi DP. d’Avignon A. Shakerdge NB. Bacskai BJ. Tu Z. Kotzbauer PT. Mach RH. J. Med. Chem. 2015; 58: 6002
    • 7f Ikeda S. Toganoh M. Easwaramoorthi S. Lim JM. Kim D. Furuta H. J. Org. Chem. 2010; 75: 8637
    • 8a Esakkidurai T. Kumarraja M. Pitchumani K. J. Chem. Sci. 2003; 115: 113
    • 8b Olah GA. Malhotra R. Narang SC. Nitration: Methods and Mechanisms . Wiley-VCH; Weinheim: 1989
    • 8c Crampton MR. Cropper EL. Gibbons LM. Millar RW. Green Chem. 2002; 4: 275
    • 9a Hassan J. Sevignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
    • 9b Thiebes C. Prakash GK. S. Petasis NA. Olah GA. Synlett 1998; 141
    • 9c Prakash GK. S. Chacko S. Panja C. Thomas TE. Gurung L. Rasul G. Mathew T. Olah GA. Adv. Synth. Catal. 2009; 351: 1567
    • 10a Fan Z. Ni J. Zhang A. J. Am. Chem. Soc. 2016; 138: 8470
    • 10b Prakash GK. S. Panja C. Mathew T. Surampudi V. Petasis NA. Olah GA. Org. Lett. 2004; 6: 2205
    • 10c Manna S. Maity S. Rana S. Agasti S. Maiti D. Org. Lett. 2012; 14: 1736
    • 10d Bose A. Mal P. Chem. Commun. 2017; 53: 11368
  • 11 Sun H.-B. Hua R. Yin Y. J. Org. Chem. 2005; 70: 9071
  • 12 Natarajan P. Chaudhary R. Venugopalan P. J. Org. Chem. 2015; 80: 10498
  • 13 Dove MF. A. Manz B. Montgomery J. Pattenden G. Wood SA. J. Chem. Soc., Perkin Trans. 1 1998; 1589
  • 14 Rajagopal R. Srinivasan KV. Synth. Commun. 2003; 33: 961
  • 15 Zolfigol MA. Ghaemi E. Madrakian E. Synth. Commun. 2000; 30: 1689
    • 16a Zolfigol MA. Ghaemi E. Madrakian E. Molecules 2001; 6: 614
    • 16b Zolfigol MA. Ghaemi E. Madrakian E. Synlett 2003; 191
    • 16c Zolfigol MA. Madrakian E. Ghaemi E. Molecules 2002; 7: 734
  • 17 Shackelford SA. Anderson MB. Christie LC. Goetzen T. Guzman MC. Hananel MA. Kornreich WD. Li H. Pathak VP. Rabinovich AK. Rajapakse RJ. Truesdale LK. Tsank SM. Vazir HN. J. Org. Chem. 2003; 68: 267
  • 18 Toyao T. Ueno N. Miyahara K. Matsui Y. Kim T.-H. Horiuchi Y. Ikeda H. Matsuoka M. Chem. Commun. 2015; 51: 16103