RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2018; 50(16): 3187-3196
DOI: 10.1055/s-0037-1610023
DOI: 10.1055/s-0037-1610023
special topic
Regio- and Stereoselective Nickel-Catalyzed Coupling of Boronic Acids with Allenoates
Acknowledgment is made to University of Bologna for financial support. Y.L. thanks Chinese Scholarship Council No. 201609120008 for funding support.Weitere Informationen
Publikationsverlauf
Received: 27. März 2018
Accepted after revision: 23. April 2018
Publikationsdatum:
12. Juni 2018 (online)

Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis
Abstract
The Ni(II)-catalyzed cross-coupling of arylboronic acids with allenoates is documented. The high regio- and stereoselectivity of the process enables a wide range of β-aryl β,γ-unsaturated esters to be prepared in good to excellent yields (up to 95%) and high E/Z-selectivity. Additionally, [3+2]-cascade sequence was observed when 2-formylphenylboronic acid was employed.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610023.
- Supporting Information
-
References
- 1a Netherton MR. Fu GC. Adv. Synth. Catal. 2004; 346: 1525
- 1b Li Z. Liu L. Chin. J. Catal. 2015; 36: 3
- 1c Standley EA. Tasker SZ. Jensen KL. Jamison TF. Acc. Chem. Res. 2015; 48: 1503
- 1d Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005
- 1e Henrion M. Ritleng V. Chetcuti MJ. ACS Catal. 2015; 5: 1283
- 1f Ananikov VP. ACS Catal. 2015; 5: 1964
- 1g Ritleng V. Henrion M. Chetcuti MJ. ACS Catal. 2016; 6: 890
- 2 Wang D. Astruc D. Chem. Soc. Rev. 2017; 46: 816
- 3a Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
- 3b Wang X. Dai Y. Gong H. Top. Curr. Chem. 2016; 374: 43
- 3c Lee S.-C. Guo L. Yue H. Liao H.-H. Rueping M. Synlett 2017; 28: 2594
- 4 Richmond E. Moran J. Synthesis 2018; 50: 499
- 5a Jia M. Cera G. Perrotta D. Bandini M. Chem. Eur. J. 2014; 20: 9875
- 5b Romano C. Jia M. Monari M. Manoni E. Bandini M. Angew. Chem. Int. Ed. 2014; 53: 13854
- 5c Jia M. Monari M. Yang Q.-Q. Bandini M. Chem. Commun. 2015; 51: 2320
- 5d Rocchigiani L. Jia M. Bandini M. Macchioni A. ACS Catal. 2015; 5: 3911
- 5e Ocello R. De Nisi A. Jia M. Yang Q.-Q. Giacinto P. Bottoni A. Miscione GP. Bandini M. Chem. Eur. J. 2015; 21: 18445
- 5f Mastandrea MM. Mellonei N. Giacinto P. Collado A. Nolan SP. Miscione GP. Bottoni A. Bandini M. Angew. Chem. Int. Ed. 2015; 54: 14885
- 5g Giacinto P. Bottoni A. Garelli A. Miscione GP. Bandini M. ChemCatChem 2018; 10
- 6a Wang J. Qin T. Chen T.-G. Wimmer L. Edwards JT. Cornella J. Vokits B. Shaw SA. Baran PS. Angew. Chem. Int. Ed. 2016; 55: 9676
- 6b Guo L. Rueping M. Chem. Eur. J. 2016; 22: 16787
- 6c Xiao Y.-L. Min Q.-Q. Xu C. Wang R.-W. Zhang X. Angew. Chem. Int. Ed. 2016; 55: 5837
- 6d Gu J.-W. Min Q.-Q. Yu L.-C. Zhang X. Angew. Chem. Int. Ed. 2016; 55: 12270
- 6e Guo L. Liu X. Baumann C. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 15415
- 6f Stache EE. Rovis T. Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 3679
- 6g Ariki ZT. Maekawa Y. Nambo M. Crudden CM. J. Am. Chem. Soc. 2018; 140: 78
- 7 Liu Y. De Nisi A. Cerveri A. Monari M. Bandini M. Org. Lett. 2017; 19: 5034
- 8a Lu X. Zhang C. Xu Z. Acc. Chem. Res. 2001; 34: 535
- 8b Cowen BJ. Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
- 8c Wang Z. Xu X. Kwon O. Chem. Soc. Rev. 2014; 43: 2927
- 8d Wei Y. Shi M. Chem. Asian J. 2014; 9: 2720
- 9a Lu Z. Chai G. Ma S. J. Am. Chem. Soc. 2007; 129: 14546
- 9b Chai G. Lu Z. Fu C. Ma S. Adv. Synth. Catal. 2009; 351: 1946
- 9c Lu Z. Chai G. Zhang X. Ma S. Org. Lett. 2008; 10: 3517
- 9d He J. Lu Z. Chai G. Fu C. Ma S. Tetrahedron 2012; 68: 2719
- 10a Ma S. Jiao N. Ye L. Chem. Eur. J. 2003; 9: 6049
- 10b Bai T. Ma S. Jia G. Tetrahedron 2007; 63: 6210
- 10c Qian R. Guo H. Liao Y. Guo Y. Ma S. Angew. Chem. Int. Ed. 2005; 44: 4771
- 10d Yu X. Lu X. Org. Lett. 2009; 11: 4366
- 10e Yu X. Lu X. J. Org. Chem. 2011; 76: 6350
- 11 Structure elucidation of 2ap was carried out by 1H NMR analysis.
- 12 Attempts to extend the intramolecural annulation to a three-component approach involving allenoate/boronic acid/aldehyde failed.
- 13 The inseparable allenoate/alkyne mixture is easily obtainable by a prolonged reaction time in the synthesis of compound 1.
- 14 Characterization of 1a gave data similar to that in the literature: Rout L. Harned AM. Chem. Eur. J. 2009; 15: 12926
For general reviews on Ni catalysis, see:
For a selection of Ni-catalyzed Suzuki-type cross-coupling, see: