Synthesis 2018; 50(15): 3015-3021
DOI: 10.1055/s-0037-1609964
special topic
© Georg Thieme Verlag Stuttgart · New York

Electron-Transfer-Induced Intramolecular Heck Carbonylation Reactions Leading to Benzolactones and Benzolactams

Takahide Fukuyama
a  Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan   Email: ryu@c.s.osakafu-u.ac.jp
,
Takanobu Bando
a  Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan   Email: ryu@c.s.osakafu-u.ac.jp
,
Ilhyong Ryu*
a  Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan   Email: ryu@c.s.osakafu-u.ac.jp
b  Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
› Author Affiliations
This work was supported by Grants-in-Aid for Scientific Research (A) (no. 26248031) from JSPS and Scientific Research on Innovative Areas 2707 Middle molecular strategy (no. 15H05850) from MEXT.
Further Information

Publication History

Received: 07 March 2018

Accepted after revision: 18 April 2018

Publication Date:
29 May 2018 (eFirst)

Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

A metal-catalyst-free intramolecular Heck carbonylation reaction of benzyl alcohols and benzyl amines with carbon monoxide under heating at 250 °C affords the corresponding benzolactones and benzolactams in good to excellent yields. A hybrid radical/ionic chain mechanism, involving electron transfer from radical anions generated by nucleophilic attack of alcohols or amines on intermediate acyl radicals, is proposed.

Supporting Information

 
  • References

    • 2a Schoenberg A. Bartoletti I. Heck RF. J. Org. Chem. 1974; 39: 3318
    • 2b Schoenberg A. Heck RF. J. Org. Chem. 1974; 39: 3327
    • 3a Cowell A. Stille JK. J. Am. Chem. Soc. 1980; 102: 4193
    • 3b Mori M. Chiba K. Ban Y. J. Org. Chem. 1978; 43: 1684

      For reviews on radical carbonylation, see:
    • 4a Ryu I. Sonoda N. Angew. Chem., Int. Ed. Engl. 1996; 35: 1050
    • 4b Ryu I. Sonoda N. Curran DP. Chem. Rev. 1996; 96: 177
    • 4c Ryu I. Chem. Soc. Rev. 2001; 30: 16
    • 4d Ryu I. Chem. Rec. 2002; 2: 249
    • 4e Ryu I. Uenoyama Y. Matsubara H. Bull. Chem. Soc. Jpn. 2006; 79: 1476
    • 4f Schiesser CH. Wille U. Matsubara H. Ryu I. Acc. Chem. Res. 2007; 40: 303
    • 4g Sumino S. Fusano A. Fukuyama T. Ryu I. Acc. Chem. Res. 2014; 47: 1563
  • 5 For a review of acyl radicals, see: Chatgilialoglu C. Crich D. Komatsu M. Ryu I. Chem. Rev. 1999; 99: 1991

    • For reviews, see:
    • 6a Studer A. Curran DP. Nat. Chem. 2014; 6: 765
    • 6b Studer A. Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 7 Shirakawa E. Hayashi T. Chem. Lett. 2012; 41: 130
    • 8a Ryu I. Kusano K. Masumi N. Yamazaki H. Ogawa A. Sonoda N. Tetrahedron Lett. 1990; 31: 6887
    • 8b Ryu I. Yamazaki H. Ogawa A. Kambe N. Sonoda N. J. Am. Chem. Soc. 1993; 115: 1187
    • 8c Kawamoto T. Okada T. Curran DP. Ryu I. Org. Lett. 2013; 15: 2144

      For carbonylative synthesis of amides and lactams including trapping of acyl radicals by amines, see:
    • 9a Uenoyama Y. Fukuyama T. Nobuta O. Matsubara H. Ryu I. Angew. Chem. Int. Ed. 2005; 44: 1075
    • 9b Uenoyama Y. Fukuyama T. Ryu I. Org. Lett. 2007; 9: 935
    • 9c Ryu I. Fukuyama T. Tojino M. Uenoyama Y. Yonamine Y. Terasoma N. Matsubara H. Org. Biomol. Chem. 2011; 9: 3780
    • 9d Fukuyama T. Nakashima N. Okada T. Ryu I. J. Am. Chem. Soc. 2013; 135: 1006
  • 10 For a related lactone synthesis, see: Ryu I. Fukuyama T. Nobuta O. Uenoyama Y. Bull. Korean Chem. Soc. 2010; 31: 545
  • 11 Zhang H. Shi R. Ding A. Lu L. Chen B. Lei A. Angew. Chem. Int. Ed. 2012; 51: 12542
  • 12 Fukuoka S. Ind. Eng. Chem. Res. 2016; 55: 4830
  • 13 Guo W. Lu L.-Q. Wang Y.-N. Chen J.-R. Xiao WJ. Angew. Chem. Int. Ed. 2015; 54: 2265
  • 14 Majek M. von Wangelin AJ. Angew. Chem. Int. Ed. 2015; 54: 2270
  • 15 Koziakov D. von Wangelin AJ. Org. Biomol. Chem. 2017; 15: 6715
  • 16 Kawamoto T. Sato A. Ryu I. Chem. Eur. J. 2015; 21: 14764
  • 17 In a separate experiment we confirmed that 1-iodooctane was formed from trioctylamine and NH4I at 250 °C.
    • 18a Jiang X. Zhang J. Ma S. J. Am. Chem. Soc. 2016; 138: 8344
    • 18b Gerbino DC. Augner D. Slavov N. Schmalz H.-G. Org. Lett. 2012; 14: 2338
    • 18c Ranade VS. Consiglio G. Prins R. J. Org. Chem. 2000; 62: 1132
    • 18d Lodi M. Gedu S. J. Org. Chem. 2015; 80: 7089
    • 18e Hattori T. Ueda S. Takakura R. Sawama Y. Monguchi Y. Sajiki H. Chem. Eur. J. 2017; 23: 8196
    • 18f Nguyen TQ. Rodriguez-Santamaria JA. Yoo W.-J. Kobayashi S. Green Chem. 2017; 19: 2501
    • 18g Gonzalez-de-Castro A. Robertson CM. Xiao J. J. Am. Chem. Soc. 2014; 136: 8350
    • 18h Bhavani SC. Beeraiah B. Eur. J. Org. Chem. 2017; 3381
    • 18i Morimoto T. Fujioka M. Fuji K. Tsutsumi K. Kakiuchi K. J. Organomet. Chem. 2007; 692: 625
    • 18j Verma A. Kumar S. Org. Lett. 2016; 18: 4388
    • 18k Lopez-Valdez G. Olguin-Uribe S. Millan-Orriz A. Gamez-Montano R. Miranda L. Tetrahedron 2011; 67: 2693
    • 18l Adachi S. Onozuka M. Yoshida Y. Ide M. Saikawa Y. Nakata M. Org. Lett. 2014; 16: 358
    • 18m Wang L. Fu H. Jiang Y. Zhao Y. Chem. Eur. J. 2008; 14: 10722