Synthesis 2018; 50(16): 3217-3223
DOI: 10.1055/s-0037-1609963
special topic
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Transformation of Aryl 2-Pyridyl Ethers via Cleavage of the Carbon–Oxygen Bond: Synthesis of Mono-α-arylated­ Ketones

Jing Li
a  CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
a  CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
b  Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. of China   Email: zxwang@ustc.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (grant no. 21172208) and the National Basic Research Program of China (grant no. 2015CB856600).
Further Information

Publication History

Received: 17 February 2018

Accepted after revision: 13 April 2018

Publication Date:
29 May 2018 (online)

Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis

Abstract

The nickel/IPr-catalyzed reaction of aryl 2-pyridyl ethers with propiophenone and acetophenone derivatives via C–OPy bond cleavage is performed in the presence of t-BuOLi to give mono-α-arylated ketones in moderate yields. The method is suitable for electron-rich and electron-poor ethers as well as heteroaryl ethers and tolerates a range of active functional groups.

Supporting Information

 
  • References

    • 1a Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 1b Mesganaw T. Garg NK. Org. Process Res. Dev. 2013; 17: 29
    • 1c Gooßen LJ. Gooßen K. Stanciu C. Angew. Chem. Int. Ed. 2009; 48: 3569
    • 1d Li B.-J. Yu D.-G. Sun C.-L. Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
    • 1e Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 2a Kinuta H. Tobisu M. Chatani N. J. Am. Chem. Soc. 2015; 137: 1593
    • 2b Tobisu M. Zhao J. Kinuta H. Furukawa T. Igarashi T. Chatani N. Adv. Synth. Catal. 2016; 358: 2417
    • 2c Li J. Wang Z.-X. Org. Lett. 2017; 19: 3723
    • 2d Li J. Wang Z.-X. Chem. Commun. 2018; 54: 2138
    • 3a Kakiuchi F. Igi K. Matsumoto M. Hayamizu T. Chatani N. Murai S. Chem. Lett. 2002; 31: 396
    • 3b Ackermann L. Diers E. Manvar A. Org. Lett. 2012; 14: 1154
    • 3c Niu L. Yang H. Wang R. Fu H. Org. Lett. 2012; 14: 2618
    • 3d Yao J. Feng R. Wu Z. Liu Z. Zhang Y. Adv. Synth. Catal. 2013; 355: 1517
    • 3e Liang Y.-F. Li X. Wang X. Yan Y. Feng P. Jiao N. ACS Catal. 2015; 5: 1956
    • 3f Lou S.-J. Chen Q. Wang Y.-F. Xu D.-Q. Du X.-H. He J.-Q. Mao Y.-J. Xu Z.-Y. ACS Catal. 2015; 5: 2846
    • 3g Chu J.-H. Lin P.-S. Wu M.-J. Organometallics 2010; 29: 4058
    • 4a Wright WB. Jr. Press JB. Chan PS. Marsico JW. Haug MF. Lucas J. Tauber J. Tomcufcik AS. J. Med. Chem. 1986; 29: 523
    • 4b Goehring RR. Sachdeva YP. Pisipati JS. Sleevi MC. Wolfe JF. J. Am. Chem. Soc. 1985; 107: 435
    • 4c Venkatesan H. Davis MC. Altas Y. Snyder JP. Liotta DC. J. Org. Chem. 2001; 66: 3653
    • 4d Johansson CC. C. Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
    • 5a Satoh T. Kawamura Y. Miura M. Nomura M. Angew. Chem. Int. Ed. 1997; 36: 1740
    • 5b Palucki M. Buchwald SL. J. Am. Chem. Soc. 1997; 119: 11108
    • 5c Hamann BC. Hartwig JF. J. Am. Chem. Soc. 1997; 119: 12382
    • 5d Bellina F. Rossi R. Chem. Rev. 2010; 110: 1082
    • 5e Li J. Wang Z.-X. Org. Biomol. Chem. 2016; 14: 7579
    • 6a Marelli E. Davies M. Nolan SP. Chem. Eur. J. 2014; 20: 17272
    • 6b Viciu MS. Germaneau RF. Nolan SP. Org. Lett. 2002; 4: 4053
    • 6c Liao X. Weng Z. Hartwig JF. J. Am. Chem. Soc. 2008; 130: 195
    • 6d Nguyen HN. Huang X. Buchwald SL. J. Am. Chem. Soc. 2003; 125: 11818
    • 6e Hesp KD. Lundgren RJ. Stradiotto M. J. Am. Chem. Soc. 2011; 133: 5194
    • 6f Ackermann L. Mehta VP. Chem. Eur. J. 2012; 18: 10230
    • 6g Alsabeh PG. Stradiotto M. Angew. Chem. Int. Ed. 2013; 52: 7242
    • 7a Takise R. Muto K. Yamaguchi J. Itami K. Angew. Chem. Int. Ed. 2014; 53: 6791
    • 7b Cornella J. Jackson EP. Martin R. Angew. Chem. Int. Ed. 2015; 54: 4075
    • 8a Matsubara K. Ueno K. Koga Y. Hara K. J. Org. Chem. 2007; 72: 5069
    • 8b Fernández-Salas JA. Marelli E. Cordes DB. Slawin AM. Z. Nolan SP. Chem. Eur. J. 2015; 21: 3906
    • 8c Henrion M. Chetcuti MJ. Ritleng V. Chem. Commun. 2014; 50: 4624
    • 8d Grigalunas M. Ankner T. Norrby P.-O. Wiest O. Helquist P. J. Am. Chem. Soc. 2015; 137: 7019
  • 9 Fujimoto T. Ritter T. Org. Lett. 2015; 17: 544
  • 10 Grasa GA. Colacot TJ. Org. Lett. 2007; 9: 5489
  • 11 Drapeau MP. Fabre I. Grimaud L. Ciofini I. Ollevier T. Taillefer M. Angew. Chem. Int. Ed. 2015; 54: 10587
  • 12 Hong Y.-T. Barchuk A. Krische MJ. Angew. Chem. Int. Ed. 2006; 45: 6885
  • 13 Mendoza-Espinosa D. González-Olvera R. Negrón-Silva GE. Angeles-Beltrán D. Suárez-Castillo OR. Álvarez-Hernández A. Santillan R. Organometallics 2015; 34: 4529
  • 14 Marelli E. Renault Y. Sharma SV. Nolan SP. Goss RJ. M. Chem. Eur. J. 2017; 23: 3832
  • 15 Deng Z. Chen C. Cui S. RSC Adv. 2016; 6: 93753
  • 16 Speckmeier E. Padié C. Zeitler K. Org. Lett. 2015; 17: 4818
  • 17 Purohit VC. Allwein SP. Bakale RP. Org. Lett. 2013; 15: 1650