Synthesis 2018; 50(23): 4555-4568
DOI: 10.1055/s-0037-1609943
short review
© Georg Thieme Verlag Stuttgart · New York

Linear Neutral Receptors for Anions: Synthesis, Structure and Applications

Agnieszka Cholewiak
,
Pawel Stepniak
,
Janusz Jurczak*
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland   Email: jurczak_group@icho.edu.pl
› Author Affiliations
This work was supported by an OPUS grant (UMO-2014/15/B/ST5/05038) from the National Science Centre of Poland.
Further Information

Publication History

Received: 31 May 2018

Accepted after revision: 09 August 2018

Publication Date:
19 September 2018 (online)


Abstract

A selective digest of linear anion receptors based on different aromatic skeletons is presented. Since the structures of anions vary from one to another, different strategies have been developed over recent years in order to bind anions efficiently and selectively. Rigidity, number of hydrogen bond donors, steric hindrance, and special preorganization of linear receptors are analyzed to shed light on the rational design of anion receptors.

1 Introduction

2 1,3- and 1,2-Benzene Derivatives

3 1,3- and 5,7-Azulene Derivatives

4 1,8-Naphthalene Derivatives

5 1,8-Anthracene Derivatives

6 2,6-Pyridine Derivatives

7 2,5-Pyrrole Derivatives

8 Diamidoarenodipyrrole Derivatives

9 Carbazole Derivatives

10 DITIPIRAM Derivatives

11 Conclusion

 
  • References

  • 1 Kolesnichenko IV. Anslyn EV. Chem. Soc. Rev. 2017; 46: 2385
  • 2 Tena-Solsona M. Rieß B. Grötsch RK. Löhrer FC. Wanzke C. Käsdorf B. Bausch AR. Müller-Buschbaum P. Lieleg O. Boekhoven J. Nat. Commun. 2017; 8: 15895
  • 3 Lehn J.-M. Science 1993; 260: 1762
  • 4 Busschaert N. Caltagirone C. van Rossom W. Gale PA. Chem. Rev. 2015; 115: 8038
  • 5 Oshovsky GV. Reinhoudt DN. Verboom W. Angew. Chem. Int. Ed. 2007; 46: 2366
  • 6 Molina P. Zapata F. Caballero A. Chem. Rev. 2017; 117: 9907
    • 7a Jia C. Zuo W. Zhang D. Yang X.-J. Wu B. Chem. Commun. 2016; 52: 9614
    • 7b Zhang W. Loebach JL. Wilson SR. Jacobsen EN. J. Am. Chem. Soc. 1990; 112: 2801
  • 8 Kaur N. Kaur G. Fegade UA. Singh A. Sahoo SK. Kuwar AS. Singh N. Trends Anal. Chem. 2017; 95: 86
  • 9 Vargas-Zuniga GI. Sessler JL. Coord. Chem. Rev. 2017; 345: 281
    • 10a Kavallieratos K. Bertao CM. Crabtree RH. J. Org. Chem. 1999; 64: 1675
    • 10b Yamnitz CR. Negin S. Carasel IA. Winter RK. Gokel GW. Chem. Commun. 2010; 46: 2838
  • 11 Yin Z. Li Z. Yu A. He J. Cheng JP. Tetrahedron Lett. 2004; 45: 6803
  • 12 Caltagirone C. Bazzicalupi C. Isaia F. Light ME. Lippolis V. Montis R. Murgia S. Olivari M. Picci G. Org. Biomol. Chem. 2013; 11: 2445
  • 13 Snellink-Ruel BH. M. Antonisse MM. G. Engbersen JF. J. Timmerman P. Reinhoudt DN. Eur. J. Org. Chem. 2000; 165
  • 14 Bühlmann P. Nishizawa S. Xiao KP. Umezawa Y. Tetrahedron 1997; 53: 1647
  • 15 Kadam SA. Martin K. Haav K. Toom L. Mayeux C. Pung A. Gale PA. Hiscock JR. Brooks SJ. Kirby IL. Busschaert N. Leito I. Chem. Eur. J. 2015; 21: 5145
  • 16 Brooks SJ. Gale PA. Light ME. Chem. Commun. 2005; 4696
  • 17 Martin K. Nõges J. Haav K. Kadam SA. Pung A. Leito I. Eur. J. Org. Chem. 2017; 5231
  • 18 Tobler HJ. Bauder A. Günthard HH. J. Mol. Spectrosc. 1965; 18: 239
    • 19a Zieliński T. Kędziorek M. Jurczak J. Tetrahedron Lett. 2005; 46: 6231
    • 19b Zieliński T. Kędziorek M. Jurczak J. Chem. Eur. J. 2008; 14: 838
  • 20 Mathias LJ. Overberger CG. J. Org. Chem. 1980; 45: 1701
  • 21 Cho EJ. Moon JW. Ko SW. Lee JY. Kim SK. Yoon J. Nam KC. J. Am. Chem. Soc. 2003; 125: 12376
  • 22 Xu G. Tarr MA. Chem. Commun. 2004; 1050
  • 23 Lee JY. Cho EJ. Mukamel S. Nam KC. J. Org. Chem. 2004; 69: 943
  • 24 Chakraborty S. Tarr MA. Can. J. Chem. 2007; 85: 153
  • 25 Eun JC. Byung JR. Young JL. Kye CN. Org. Lett. 2005; 7: 2607
  • 26 Ghosh K. Panja S. Bhattacharya S. RSC Adv. 2015; 5: 72772
  • 27 Jeong HA. Cho EJ. Yeo HM. Ryu BJ. Nam KC. Bull. Korean Chem. Soc. 2007; 28: 851
  • 28 Hamankiewicz P. Granda JM. Jurczak J. Tetrahedron Lett. 2013; 54: 5608
  • 29 Sessler JL. Mody TD. Ford DA. Lynch V. Angew. Chem., Int. Ed. Engl. 1992; 31: 452
  • 30 Dahan A. Ashkenazi T. Kuznetsov V. Makievski S. Drug E. Fadeev L. Bramson M. Schokoroy S. Rozenshine-Kemelmakher E. Gozin M. J. Org. Chem. 2007; 72: 2289
  • 31 Gross DE. Mikkilineni V. Lynch VM. Sessler JL. Supramol. Chem. 2010; 22: 135
  • 32 Hu ZQ. Cui CL. Lu HY. Ding L. Yang XD. Sens. Actuators, B 2009; 141: 200
  • 33 Kwon JY. Jang YJ. Kim SK. Lee K.-H. Kim JS. Yoon J. J. Org. Chem. 2004; 69: 5155
    • 34a Camiolo S. Gale PA. Hursthouse MB. Light ME. Shi AJ. Chem. Commun. 2002; 758
    • 34b Gale PA. Camiolo S. Chapman CP. Light ME. Hursthouse MB. Tetrahedron Lett. 2001; 42: 5095
  • 35 Zieliński T. Jurczak J. Tetrahedron 2005; 61: 4081
    • 36a Jurczak J. Dydio P. Stepniak P. Zielinski T. RSC Adv. 2016; 6: 41568
    • 36b Li R. Evans LS. Larsen DS. Gale PA. Brooker S. New J. Chem. 2004; 28: 1340
  • 37 Evans LS. Gale PA. Light ME. Quesada R. New J. Chem. 2006; 30: 1019
  • 38 Curiel D. Espinosa A. Más-Montoya M. Sánchez G. Tárraga A. Molina P. Chem. Commun. 2009; 7539
  • 39 Jurczak J. Dydio P. Stępniak P. Zielinski T. Sens. Actuators, B 2016; 237: 621
    • 40a Chmielewski MJ. Charon M. Jurczak J. Org. Lett. 2004; 6: 3501
    • 40b Bąk KM. Chabuda K. Montes H. Quesada R. Chmielewski M. Org. Biomol. Chem. 2018; 16: 5188
  • 41 Lee SK. Han Y. Choi Y. Kang J. J. Incl. Phenom. Macrocyclic Chem. 2012; 74: 177
  • 42 Chmielewski M. Synthesis 2010; 3067
  • 43 Thangadurai TD. Singh NJ. Hwang IC. Jung WL. Chandran RP. Kim KS. J. Org. Chem. 2007; 72: 5461
  • 44 Cholewiak A. Tycz A. Jurczak J. Org. Lett. 2017; 19: 3001