Synthesis 2018; 50(19): 3875-3885
DOI: 10.1055/s-0037-1609938
© Georg Thieme Verlag Stuttgart · New York

Aerobic Allylation of Alcohols with Non-Activated Alkenes Enabled by Light-Driven Selenium-π-Acid Catalysis

Katharina Rode
a  Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany   Email:
Martina Palomba
b  Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Perugia, Via Fabretti, 48 - 06123 Perugia, Italy
Stefan Ortgies
a  Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany   Email:
Rene Rieger
a  Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany   Email:
a  Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany   Email:
› Author Affiliations
This work was financially supported by the German Research Foundation [DFG, Emmy Noether Fellowship to A.B. (BR-4907/1-1)], the Lower Saxony Ministry for Science and Culture (Georg-Christoph-Lichtenberg Fellowship to K.R.), and the Fonds der Chemischen Industrie (Ph.D. Fellowship to S.O.).
Further Information

Publication History

Received: 05 June 2018

Accepted after revision: 06 August 2018

Publication Date:
23 August 2018 (online)


A new organocatalytic protocol for the aerobic dehydrogenative allylation of alcohols using non-activated alkenes as the allylating reagent and ambient air as the terminal oxidant is established. Mechanistically, the procedure relies on the interplay of a diselane and a photo­redox catalyst by means of a light-induced electron transfer process. Under optimized conditions, a broad range of both cyclic and acyclic ethers is accessed with very high functional group tolerance and excellent regioselectivity.

Supporting Information

  • References

  • 1 Dewick PM. In Medicinal Natural Products: A Biosynthetic Approach . 3rd Ed. John Wiley & Sons; Chichester: 2009
  • 2 Bruijnincx PC. A. Rinaldi R. Weckhuysen BM. Green Chem. 2015; 17: 4860
    • 3a D’souza AA. Shegokar R. Expert Opin. Drug Delivery 2016; 13: 1257
    • 3b Tan S. Zou C. Zhang W. Yin M. Gao X. Tang Q. Drug Delivery 2017; 24: 1831
    • 4a Fiume MM. Heldreth B. Bergfeld WF. Belsito DV. Hill RA. Klaassen CD. Liebler D. Marks JG. Jr. Shank RC. Slaga TJ. Snyder PW. Andersen FA. Int. J. Toxicol. 2012; 31: 169S
    • 4b Jang H.-J. Shin C.-Y. Kim K.-B. Toxicol. Res. 2015; 31: 105

      For representative reviews, see:
    • 7a Trost BM. Chem. Pharm. Bull. 2002; 50: 1
    • 7b Trost BM. J. Org. Chem. 2004; 69: 5813
    • 7c Lu Z. Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 7d Butt NA. Zhang W. Chem. Soc. Rev. 2015; 44: 7929

    • For representative Pd-catalyzed methods, see:
    • 7e Kirsch SF. Overman LE. White NS. Org. Lett. 2007; 9: 911
    • 7f Lam FL. Au-Yeung TT.-L. Kwong FY. Zhou Z. Wong KY. Chan AS. C. Angew. Chem. Int. Ed. 2008; 47: 1280
    • 7g Liu Z. Du H. Org. Lett. 2010; 12: 3054

    • For exemplary reports on Ru-catalyzed etherifications, see:
    • 7h Mbaye MD. Renaud J.-L. Demerseman B. Bruneau C. Chem. Commun. 2004; 1870
    • 7i Onitsuka K. Okuda H. Sasai H. Angew. Chem. Int. Ed. 2008; 47: 1454

    • For representative examples on Ir-catalyzed allylic etherifications, see:
    • 7j Kiener CA. Shu C. Incarvito C. Hartwig JF. J. Am. Chem. Soc. 2003; 125: 14272
    • 7k Shu C. Hartwig JF. Angew. Chem. Int. Ed. 2004; 43: 4794
    • 7l Welter C. Dahnz A. Brunner B. Streiff S. Dübon P. Helmchen G. Org. Lett. 2005; 7: 1239
    • 7m Kimura M. Uozumi Y. J. Org. Chem. 2007; 72: 707
    • 7n Roggen M. Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 5568

      For representative examples of intermolecular oxidative allylic etherifications using alkenes as latent electrophiles, see:
    • 8a Tiecco M. Testaferri L. Tingoli M. Bagnoli L. Santi C. J. Chem. Soc., Chem. Commun. 1993; 637
    • 8b Tomita R. Mantani K. Hamasaki A. Ishida T. Tokunaga M. Chem. Eur. J. 2014; 20: 9914
    • 8c Liron F. Oble J. Lorion MM. Poli G. Eur. J. Org. Chem. 2014; 5863
    • 8d Li C. Li M. Li J. Liao J. Wu W. Jiang H. J. Org. Chem. 2017; 82: 10912

    • For representative examples of intramolecular oxidative allylic etherifications using simple alkenes as latent electrophiles, see:
    • 8e Semmelhack MF. Kim CR. Dobler W. Meier M. Tetrahedron Lett. 1989; 30: 4925
    • 8f Rönn M. Bäckvall J.-E. Andersson PG. Tetrahedron Lett. 1995; 36: 7749
    • 8g Trend RM. Ramtohul YK. Stoltz BM. J. Am. Chem. Soc. 2005; 127: 17778
    • 8h Guo R. Huang J. Huang H. Zhao X. Org. Lett. 2016; 18: 504
    • 8i Brooks JL. Xu L. Wiest O. Tan DS. J. Org. Chem. 2017; 82: 57
  • 9 Trost BM. Science 1991; 254: 1471
  • 10 Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
  • 11 For an isolated successful example of an aerobic allylic alkene amination catalyzed by palladium under an atmosphere of air, see: Pattillo CC. Strambeanu II. Calleja P. Vermeulen NA. Mizuno T. White MC. J. Am. Chem. Soc. 2016; 138: 1265
  • 12 Yoo KS. O’Neill J. Sakaguchi S. Giles R. Lee JH. Jung KW. J. Org. Chem. 2010; 75: 95
  • 13 For a conceptually related aerobic olefin derivatization with a similar substrate scope that proceeds through a sequence of allylic etherification and C–H oxidation to furnish esters, see: Yang W. Chen H. Li J. Li C. Wu W. Jiang H. Chem. Commun. 2015; 51: 9575
    • 14a Tiecco M. Testaferri L. Marini F. Santi C. Bagnoli L. Temperini A. Tetrahedron: Asymmetry 1999; 10: 747
    • 14b Niyomura O. Cox M. Wirth T. Synlett 2006; 251
    • 14c Torii S. Uneyama K. Ono M. Bannou T. J. Am. Chem. Soc. 1981; 103: 4606
    • 14d Iwaoka M. Tomoda S. J. Chem. Soc., Chem. Commun. 1992; 1165
    • 14e Tiecco M. Testaferri L. Santi C. Eur. J. Org. Chem. 1999; 797
  • 15 For an isolated report on an intramolecular etherification in the context of the total synthesis of (+)-Greek tobacco lactone, see: Leisering S. Riaño I. Depken C. Gross L. Weber M. Lentz D. Zimmer R. Stark CB. W. Breder A. Christmann M. Org. Lett. 2017; 19: 1478
    • 16a Trenner J. Depken C. Weber T. Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952
    • 16b Krätzschmar F. Kaßel M. Delony D. Breder A. Chem. Eur. J. 2015; 21: 7030
    • 16c Ortgies S. Breder A. Org. Lett. 2015; 17: 2748
  • 17 Ortgies S. Breder A. ACS Catal. 2017; 7: 5828
    • 18a Ortgies S. Depken C. Breder A. Org. Lett. 2016; 18: 2856
    • 18b Ortgies S. Rieger R. Rode K. Koszinowski K. Kind J. Thiele CM. Rehbein J. Breder A. ACS Catal. 2017; 7: 7578
    • 18c Depken C. Krätzschmar F. Rieger R. Rode K. Breder A. Angew. Chem. Int. Ed. 2018; 57: 2459
  • 19 For details, see the Supporting Information.
  • 20 Joshi-Pangu A. Lévesque F. Roth HG. Oliver SF. Campeau L.-C. Nicewicz D. DiRocco DA. J. Org. Chem. 2016; 81: 7244
  • 21 Schenck GO. Naturwissenschaften 1948; 35: 28