Synthesis 2018; 50(21): 4189-4200
DOI: 10.1055/s-0037-1609933
short review
© Georg Thieme Verlag Stuttgart · New York

Tiacumicin B: An Antibiotic of Prime Importance and a Natural Product with an Inspiring Complex Structure

Emmanuel Roulland
C-TAC, UMR 8638 CNRS/Université Paris Descartes, Faculté de Pharmacie, 4, avenue de l’Observatoire, 75006, Paris, France   Email: emmanuel.roulland@parisdescartes.fr
› Author Affiliations
Further Information

Publication History

Received: 14 June 2018

Accepted after revision: 24 July 2018

Publication Date:
06 September 2018 (online)


Abstract

This short review aims at decrypting and analyzing the various strategies used for the synthesis of tiacumicin B. Natural products synthesis is a way for organic chemists to express inventiveness, intellectual dexterity, and elegance in strategy of synthesis. Some molecular structures are more inspiring than others; and if like tiacumicin B, the architectural challenge meets high biological and medicinal interest, the molecule can then attract the attention of many groups of synthetic chemists.

1 Introduction

2 The Strategic Challenges of this Total Synthesis

3 Construction of the C1–C5 Region

4 Construction of the C14–C19 Region

5 Construction of the C5–C12 Region

6 Construction of the C12–C15 Diene Motif

7 Macrocyclization

8 Synthesis of the Rhamnosyl Donor

9 Synthesis of the Noviosyl Donor and Glycosylation

10 The Recurrent Problems Caused by Protective Groups

11 Conclusion

 
  • References

  • 1 Baran PS. J. Am. Chem. Soc. 2018; 140: 4751

    • First isolated:
    • 2a Parenti F. Pagani H. Beretta G. J. Antibiot. 1975; 28: 247
    • 2b Coronelli C. White RJ. Lancini GC. Parenti F. J. Antibiot. 1975; 28: 253

      Some ambiguity existed concerning the structure of tiacumicin B and its relatives, for clarifications, see:
    • 3a Erb W. Zhu J. Nat. Prod. Rep. 2013; 30: 161
    • 3b Bedeschi A. Fonte P. Fronza G. Fuganti C. Serra S. Nat. Prod. Commun. 2014; 9: 237
  • 4 Lessa FC. Mu Y. Bamberg WM. Beldavs ZG. Dumyati GK. Dunn JR. Farley MM. Holzbauer SM. Meek JI. Phipps EC. Wilson LE. Winston LG. Cohen JA. Limbago BM. Fridkin SK. Gerding DN. McDonald LC. N. Engl. J. Med. 2015; 372: 825
  • 5 Miyatake-Ondozabal H. Kaufmann E. Gademann K. Angew. Chem. Int. Ed. 2015; 54: 1933
  • 6 Glaus F. Altmann K.-H. Angew. Chem. Int. Ed. 2015; 54: 1937
  • 7 Erb W. Grassot J.-M. Linder D. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2015; 54: 1929
    • 8a Jeanne-Julien L. Masson G. Astier E. Genta-Jouve G. Servajean V. Beau J.-M. Norsikian S. Roulland E. Org. Lett. 2017; 19: 4006
    • 8b Jeanne-Julien L. Masson G. Astier E. Genta-Jouve G. Servajean V. Beau J.-M. Norsikian S. Roulland E. J. Org. Chem. 2018; 83: 921
  • 9 Kaufmann E. Hattori H. Miyatake-Ondozabal H. Gademann K. Org. Lett. 2015; 17: 3514
    • 10a Hattori H. Kaufmann E. Miyatake-Ondozabal H. Berg R. Gademann K. J. Org. Chem. 2018; 83: 7180
    • 10b Hattori H. Roesslein J. Caspers P. Zerbe K. Miyatake Ondozabal H. Ritz D. Rueedi G. Gademann K. Angew. Chem. Int. Ed. 2018; 57: 11020
  • 11 El Ashry ES. H. Rashed N. Ibrahim ES. I. Tetrahedron 2008; 64: 10631
  • 12 Charette AB. Côté B. Monroc S. Prescott S. J. Org. Chem. 1995; 60: 6888
    • 13a Ayed TB. Amri H. El Gaied MM. Tetrahedron 1991; 47: 9621
    • 13b Sawamura K. Yoshida K. Suzuki A. Motozaki T. Kozawa I. Hayamizu T. Munakata R. Takao K.-I. Tadano K.-I. J. Org. Chem. 2007; 72: 6143
  • 14 Allred GD. Liebeskind LS. J. Am. Chem. Soc. 1996; 118: 2748
  • 15 Nguyen HN. Huang X. Buchwald SL. J. Am. Chem. Soc. 2003; 125: 11818
    • 16a Hong SH. Day MW. Grubbs RH. J. Am. Chem. Soc. 2004; 126: 7414
    • 16b Hanessian S. Giroux S. Larsson A. Org. Lett. 2006; 8: 5481
    • 16c Clark JR. Griffiths JR. Diver ST. J. Am. Chem. Soc. 2013; 135: 3327
  • 17 Moura-Letts G. Curran DP. Org. Lett. 2007; 9: 5
  • 18 For a review see: Wojtkielewicz A. Curr. Org. Synth. 2013; 10: 43
  • 19 Morrill C. Grubbs RH. J. Org. Chem. 2003; 68: 6031
  • 20 Brown HC. Singaram B. J. Org. Chem. 1984; 49: 945
  • 21 Bruyere D. Grigg R. Hinsley J. Hussain RK. Korn S. Orgaz De La Cierva C. Sridharan V. Wang J. Tetrahedron Lett. 2003; 44: 8669
  • 22 Bur SK. Padwa A. Chem. Rev. 2004; 104: 2401
  • 23 Pétrier C. Luche J.-L. J. Org. Chem. 1985; 50: 910
  • 24 Crabbé P. Fillion H. André D. Luche J.-L. J. Chem. Soc., Chem. Commun. 1979; 859
    • 25a Moure AL. Gomez Arrayas R. Cardenas DJ. Alonso I. Carretero JC. J. Am. Chem. Soc. 2012; 134: 7219
    • 25b Hesse MJ. Butts CP. Willis CL. Aggarwal VK. Angew. Chem. Int. Ed. 2012; 51: 12444
  • 26 Evans DA. Bartroli J. Shih TL. J. Am. Chem. Soc. 1981; 103: 2127
  • 27 Shirokawa S. Kamiyama M. Nakamura T. Okada M. Nakazaki A. Hosokawa S. Kobayashi S. J. Am. Chem. Soc. 2004; 126: 13604
    • 28a Corey EJ. Enders D. Bock MG. Tetrahedron Lett. 1976; 17: 7
    • 28b Schlessinger RH. Poss MA. Richardson S. Lin P. Tetrahedron Lett. 1985; 26: 2391
    • 28c Desmond R. Mills SG. Volante RP. Shinkai I. Tetrahedron Lett. 1988; 29: 3895
  • 29 Kim H. Ho S. Leighton JL. J. Am. Chem. Soc. 2011; 133: 6517
  • 30 Nakai T. Mikami K. Chem. Rev. 1986; 86: 885
  • 31 Lautens M. Hughes G. Zunic V. Can. J. Chem. 2000; 78: 868
  • 32 Dubbaka SR. Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
  • 33 Jeanne-Julien L. Astier E. Lai-Kuen R. Genta-Jouve G. Roulland E. Org. Lett. 2018; 20: 1430
  • 34 Martí-Centelles V. Pandey MD. Burguete MI. Luis SV. Chem. Rev. 2015; 115: 8736
  • 35 Parenty A. Moreau X. Campagne J.-M. Chem. Rev. 2006; 106: 911
  • 36 Gradillas A. Pérez-Castells J. Angew. Chem. Int. Ed. 2006; 45: 6086
  • 37 Chemler SR. Danishefsky SJ. Org. Lett. 2000; 2: 2695
  • 38 Inanaga J. Hirata K. Saeki H. Katsuki T. Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
  • 39 Wolfe JP. Singer RA. Yang BH. Buchwald SL. J. Am. Chem. Soc. 1999; 121: 9550
  • 40 Patel BH. Mason AM. Barrett AG. M. Org. Lett. 2011; 13: 5156
  • 41 Ley SV. Owen DR. Wesson KE. J. Chem. Soc., Perkin Trans. 1 1997; 2805
  • 42 Kumamoto H. Deguchi K. Wagata T. Furuya Y. Odanaka Y. Kitade Y. Tanaka H. Tetrahedron 2009; 65: 8007
    • 43a Helferich B. Wedemeyer KF. Justus Liebigs Ann. Chem. 1949; 563: 139
    • 43b Schroeder LR. Green JW. J. Chem. Soc. C 1966; 530
    • 43c Chen Y. Heeg MJ. Braunschweiger PG. Xie W. Wang PG. Angew. Chem. Int. Ed. 1999; 38: 1768
  • 44 Hickmann V. Alcarazo M. Fürstner A. J. Am. Chem. Soc. 2010; 132: 11042
  • 45 Roulland E. Angew. Chem. Int. Ed. 2011; 50: 1226
  • 46 Nakajima N. Abe R. Yonemitsu O. Chem. Pharm. Bull. 1988; 36: 4244