Synthesis 2018; 50(15): 2990-2998
DOI: 10.1055/s-0037-1609835
special topic
© Georg Thieme Verlag Stuttgart · New York

Latent Radical Cleavage of α-Allenylic C–O Bonds: Potassium Persulfate Mediated Thiolation of Allenylphosphine Oxides

a  Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. of China   Email: rickywu@njau.edu.cn
b  Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. of China
,
Ling Zhang
a  Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. of China   Email: rickywu@njau.edu.cn
,
Kai Wei
a  Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. of China   Email: rickywu@njau.edu.cn
,
a  Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. of China   Email: rickywu@njau.edu.cn
,
Lei Wu  *
a  Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. of China   Email: rickywu@njau.edu.cn
c  Beijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
› Author Affiliations
This project was supported by the Fundamental Research Funds for the Central Universities (NJAU, Grant No. KYTZ201604).
Further Information

Publication History

Received: 10 February 2018

Accepted after revision: 14 March 2018

Publication Date:
19 April 2018 (eFirst)

Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

A novel potassium persulfate (K2S2O8) mediated thiolation of allenylphosphine oxides with diaryl sulfides is disclosed. Mechanistic studies indicate that K2S2O8 homolyzes the diaryl sulfide to produce a thiyl radical (PhS), which is followed by C–O bond cleavage of the allenylphosphine oxide under metal-free conditions, affording novel S,P-bifunctionalized butadienes in moderate to excellent yields.

Supporting Information

 
  • References

    • 1a Dvorak CA. Schmitz WD. Poon DJ. Pryde DC. Lawson JP. Amos RA. Meyers AI. Angew. Chem. Int. Ed. 2000; 39: 1664
    • 1b Liu H. Jiang X. Chem. Asian J. 2013; 8: 2546
    • 1c Marcantoni E. Massaccesi M. Petrini M. J. Org. Chem. 2000; 65: 4553
    • 1d Johannesson P. Lindeberg G. Johansson A. Nikiforovich GV. Gogoll A. Synnergren B. Grèves ML. Nyberg F. Karlén A. Hallberg A. J. Med. Chem. 2002; 45: 1767
    • 2a Gangjee A. Zeng Y. Talreja T. McGuire JJ. Kisliuk RL. Queener SF. J. Med. Chem. 2007; 50: 3046
    • 2b Ilardi EA. Vitaku E. Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 2c Mao Y. Jiang L. Chen T. He H. Liu G. Wang H. Synthesis 2015; 47: 1387
    • 2d List B. Synlett 2001; 1675
    • 2e Harb HY. Procter DJ. Synlett 2012; 23: 6
    • 2f Müller TJ. J. Synthesis 2012; 44: 159
    • 2g Kocienski P. Synfacts 2012; 8: 5
  • 3 Arrayás RG. Carretero JC. Chem. Commun. 2011; 47: 2207
  • 4 Iino H. Usui T. Hanna J.-i. Nat. Commun. 2015; 6: 6828
    • 5a Schaumann E. Top. Curr. Chem. 2007; 274: 1
    • 5b Sabarre A. Love JA. Org. Lett. 2008; 10: 3941
    • 5c Bratz M. Bullock WH. Overman LE. Takemoto T. J. Am. Chem. Soc. 1995; 117: 5958
    • 5d Pearson WH. Lee IY. Mi Y. Stoy P. J. Org. Chem. 2004; 69: 9109
  • 6 Trost BM. Lavoie AC. J. Am. Chem. Soc. 1983; 105: 5075
    • 7a Miller RD. Hassig R. Tetrahedron Lett. 1985; 26: 2395
    • 7b Mizuno H. Domon K. Masuya K. Tanino K. Kuwajima I. J. Org. Chem. 1999; 64: 2648
    • 8a Liu Z. Rainier JD. Org. Lett. 2005; 7: 131
    • 8b Macnaughtan ML. Gary JB. Gerlach DL. Johnson MJ. A. Kampf JW. Organometallics 2009; 28: 2880
    • 9a Tu HY. Hu BL. Deng CL. Zhang XG. Chem. Commun. 2015; 51: 15558
    • 9b Siddaraju Y. Prabhu KR. J. Org. Chem. 2017; 82: 3084
    • 9c Sun J. Zhang-Negrerie D. Du Y. Adv. Synth. Catal. 2016; 358: 2035
    • 9d Maher JM. Cooper NJ. J. Am. Chem. Soc. 1980; 102: 7604
    • 9e Ranu BC. Chattopadhyay K. Banerjee S. J. Org. Chem. 2006; 71: 423
    • 9f Chen MT. Tang XY. Shi M. Org. Chem. Front. 2017; 4: 86
    • 9g Chu CM. Tu Z. Wu P. Wang CC. Liu JT. Kuo CW. Shin YH. Yao CF. Tetrahedron 2009; 65: 3878
    • 9h Imazaki Y. Shirakawa E. Hayashi T. Tetrahedron 2011; 67: 10212
    • 9i Zhang C. McClure J. Chou CJ. J. Org. Chem. 2015; 80: 4919
    • 10a Ye Y. Huang C. Zhao C. Ren B. Xiao H. Li X. Synth. Commun. 2016; 46: 1634
    • 10b Gonçalves LC. Victória FN. Lima DB. Borba PM. Perin G. Savegnago L. Lenardão EJ. Tetrahedron Lett. 2014; 55: 5275
    • 10c Wu W. Dai W. Ji X. Cao S. Org. Lett. 2016; 18: 2918
    • 10d Palani T. Park K. Song KH. Lee S. Adv. Synth. Catal. 2013; 355: 1160
    • 10e Ni S. Zhang L. Zhang W. Mei H. Han J. Pan Y. J. Org. Chem. 2016; 81: 9470
    • 10f Iwasaki M. Fujii T. Nakajima K. Nishihara Y. Angew. Chem. Int. Ed. 2014; 53: 13880
    • 10g Wang ZL. Tang RY. Luo PS. Deng CL. Zhong P. Li JH. Tetrahedron 2008; 64: 10670
    • 10h Zhang XS. Jiao JY. Zhang XH. Hu BL. Zhang XG. J. Org. Chem. 2016; 81: 5710
    • 10i Ye LM. Qian L. Chen YY. Zhang XJ. Yan M. Org. Biomol. Chem. 2017; 15: 550
    • 10j Li B. Ni PH. Huang HW. Xiao FH. Deng GJ. Adv. Synth. Catal. 2017; 359: 4300
    • 11a Wu Z. Huang X. Synlett 2005; 526
    • 11b Ito O. J. Org. Chem. 1993; 58: 1466
    • 12a Yu L. Huang X. Synlett 2007; 1371
    • 12b Everhardus RH. Gräfing R. Brandsma L. Synthesis 1983; 623
    • 12c Grayson JI. Warren S. Zaslona AT. J. Chem. Soc., Perkin Trans. 1 1987; 967
    • 12d Mueller WH. Butler PE. J. Org. Chem. 1968; 33: 1533
    • 12e Bäckvall J.-E. Ericsson A. J. Org. Chem. 1994; 59: 5850
    • 13a Zeng JW. Liu YC. Hsieh PA. Huang YT. Yi CL. Badsara SS. Lee CF. Green Chem. 2014; 16: 2644
    • 13b Ge W. Wei Y. Green Chem. 2012; 14: 2066
    • 13c Saba S. Rafique J. Braga AL. Adv. Synth. Catal. 2015; 357: 1446
    • 13d Ge W. Zhu X. Wei Y. Adv. Synth. Catal. 2013; 355: 3014
    • 13e Du B. Jin B. Sun P. Org. Lett. 2014; 16: 3032
    • 13f Du HA. Zhang XG. Tang RY. Li JH. J. Org. Chem. 2009; 74: 7844
    • 13g Lin C. Li D. Wang B. Yao J. Zhang Y. Org. Lett. 2015; 17: 1328
    • 13h Wang PF. Wang XQ. Dai JJ. Feng YS. Xu HJ. Org. Lett. 2014; 16: 4586
    • 13i Bilheri FN. Stein AL. Zeni G. Adv. Synth. Catal. 2015; 357: 1221
    • 13j Yang ZJ. Hu BL. Deng CL. Zhang XG. Adv. Synth. Catal. 2014; 356: 1962
    • 13k Yang L. Wen Q. Xiao F. Deng G. J. Org. Biomol. Chem. 2014; 12: 9519
    • 14a Brel VK. Heteroat. Chem. 2006; 17: 547
    • 14b Ma S. Acc. Chem. Res. 2009; 42: 1679
    • 14c Alcaide B. Almendros P. Aragoncillo C. Chem. Soc. Rev. 2010; 39: 783
    • 14d Krause N. Winter C. Chem. Rev. 2011; 111: 1994
    • 14e Ye J. Ma S. Acc. Chem. Res. 2014; 47: 989
    • 15a Mukai C. Ohta M. Yamashita H. Kitagaki S. J. Org. Chem. 2004; 69: 6867
    • 15b Chakravarty M. Swamy KC. K. J. Org. Chem. 2006; 71: 9128
    • 15c Nishimura T. Hirabayashi S. Yasuhara Y. Hayashi T. J. Am. Chem. Soc. 2006; 128: 2556
    • 15d Yu F. Lian X. Ma S. Org. Lett. 2007; 9: 1703
    • 15e Sajna KV. Swamy KC. K. J. Org. Chem. 2012; 77: 5345
    • 15f Gangadhararao G. Tulichala RN. P. Swamy KC. K. Chem. Commun. 2015; 51: 7168
    • 15g Baumann M. Baxendale IR. J. Org. Chem. 2015; 80: 10806
    • 15h Antitha M. Gangadhararao G. Swamy KC. K. Org. Biomol. Chem. 2016; 14: 3591
    • 15i Shen W. Luo B. Yang J. Zhang L. Han L.-B. Chem. Commun. 2016; 52: 6451
    • 16a Fourgeaud P. Volle JN. Vors JP. Bekro YA. Pirat JL. Virieux D. Tetrahedron 2016; 72: 7912
    • 16b Milosevic S. Banide EV. Müller-Bunz H. Gilheany DG. McGlinchey MJ. Organometallics 2011; 30: 3804
    • 16c Macomber RS. Kennedy ER. J. Org. Chem. 1976; 41: 3191
    • 17a Matveeva EV. Kovaleva EY. Brel VK. Russ. J. Gen. Chem. 2015; 85: 2592
    • 17b Nicponski DR. Marchi JM. Synthesis 2014; 46: 1725
    • 18a Gu Y. Hama T. Hammond GB. Chem. Commun. 2000; 395
    • 18b Zapata AJ. Gu Y. Hammond GB. J. Org. Chem. 2000; 65: 227
  • 19 Mei YQ. Liu JT. Liu ZJ. Synthesis 2007; 739
    • 20a Brel VK. Stang PJ. Eur. J. Org. Chem. 2003; 224
    • 20b Guo H. Zheng Z. Yu F. Ma S. Holuigue A. Tromp DS. Elsevier CJ. Yu Y. Angew. Chem. Int. Ed. 2006; 45: 4997
    • 21a Trifonov LS. Simova SD. Crahovats AS. Tetrahedron Lett. 1987; 28: 3391
    • 21b Essid I. Laborde C. Legros F. Sevrain N. Touil S. Rolland M. Ayad T. Volle J.-N. Pirat J.-L. Virieux D. Org. Lett. 2017; 19: 1882
    • 21c Fourgeaud P. Daydé B. Volle J.-N. Vors J.-P. Van der Lee A. Pirat J.-L. Virieux D. Org. Lett. 2011; 13: 5076
    • 22a Chen YZ. Zhang L. Lu AM. Yang F. Wu L. J. Org. Chem. 2015; 80: 673
    • 22b Mao M. Zhang L. Chen YZ. Zhu J. Wu L. ACS Catal. 2017; 7: 181
    • 22c Zhu J. Mao M. Ji HJ. Xu JY. Wu L. Org. Lett. 2017; 19: 1946
    • 22d Zhang L. Zhu J. Ma J. Wu L. Zhang WH. Org. Lett. 2017; 19: 6308

      For the reactions of allenes/alkynes with aryl disulfide under UV light, see:
    • 23a Ogawa A. Obayashi R. Doi M. Sonoda N. Hirao T. J. Org. Chem. 1998; 63: 4277
    • 23b Leardini R. Nanni D. Zanardi G. J. Org. Chem. 2000; 65: 2763
  • 24 Prasad CD. Balkrishna SJ. Kumar A. Bhakuni BS. Shrimali K. Biswas S. Kumar S. J. Org. Chem. 2013; 78: 1434