Synthesis 2018; 50(14): 2655-2677
DOI: 10.1055/s-0037-1609733
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Regioselective Synthesis of Indoles via C–H Activation/Functionalization

Inder Kumar ‡
a   Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
b   Academy of Scientific and Innovative Research, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India   Email: upendra@ihbt.res.in   Email: upendraihbt@gmail.com
,
Rakesh Kumar ‡
a   Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
b   Academy of Scientific and Innovative Research, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India   Email: upendra@ihbt.res.in   Email: upendraihbt@gmail.com
,
Upendra Sharma*
a   Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
b   Academy of Scientific and Innovative Research, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India   Email: upendra@ihbt.res.in   Email: upendraihbt@gmail.com
› Author Affiliations
This work is supported by the Science and Engineering Research Board, India (EMR/2014/001023). R.K. and I.K. acknowledge UGC, New Delhi for Junior Research Fellowships.
Further Information

Publication History

Received: 25 January 2018

Accepted after revision: 05 March 2018

Publication Date:
28 May 2018 (online)


These authors contributed equally to this review.

Abstract

Indole is an important heterocyclic motif that occurs ubiquitously in bioactive natural products and pharmaceuticals. Immense efforts have been devoted to the synthesis of indoles starting from the Fisher indole synthesis to the recently developed C–H activation/functionalization-based methods. Herein, we have reviewed the progress made on the regioselective synthesis of functionalized indoles, including 2-substituted, 3-substituted and 2,3-disusbstituted indoles, since the year 2010.

1 Introduction

2 Metal-Catalyzed Synthesis of 2-Substituted Indoles

3 Metal-Catalyzed Synthesis of 3-Substituted Indoles

4 Metal-Free Synthesis of 3-Substituted Indoles

5 Metal-Catalyzed 2,3-Disubstituted Indole Synthesis

5.1 Metal-Catalyzed Intramolecular 2,3-Disubstituted Indole Synthesis

5.2 Metal-Catalyzed Intermolecular 2,3-Disubstituted Indole Synthesis

6 Metal-Free 2,3-Disubstituted Indole Synthesis

6.1 N-Protected 2,3-Disubstituted Indole Synthesis

6.2 N-Unprotected 2,3-Disubstituted Indole Synthesis

7 Applications

8 Summary and Outlook

 
  • References

    • 1a Sundberg RJ. Indoles 1996
    • 1b Kawasaki T. Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 1c d’Ischia M. Napolitano A. Pezzella A. In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR. Ramsden CA. Scriven EF. V. Taylor RJ. K. Elsevier; Oxford: 2008: 353-388
    • 1d Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1e Xu W. Gavia DJ. Tang Y. Nat. Prod. Rep. 2014; 31: 1474
    • 1f Ishikura M. Abe T. Choshi T. Hibino S. Nat. Prod. Rep. 2015; 32: 1389
    • 2a Chen F.-E. Huang J. Chem. Rev. 2005; 105: 4671
    • 2b Boriskin YS. Leneva IA. Pecheur EI. Polyak SJ. Curr. Med. Chem. 2008; 15: 997
    • 2c Shen TY. Windholz TB. Rosegay A. Witzel BE. Wilson AN. Willett JD. Holtz WJ. Ellis RL. Matzuk AR. Lucas S. Stammer CH. Holly FW. Sarett LH. Risley EA. Nuss GW. Winter CA. J. Am. Chem. Soc. 1963; 85: 488
    • 2d Augelli-Szafran CE. Jaen JC. Moreland DW. Nelson CB. Penvose-Yi JR. Schwarz RD. Bioorg. Med. Chem. Lett. 1998; 8: 1991
    • 2e Rice LM. Hertz E. Freed ME. J. Med. Chem. 1964; 7: 313
    • 2f Baxter BL. Gluckman MI. Nature 1969; 223: 750
    • 2g Chen H. Eberlin LS. Nefliu M. Augusti R. Cooks RG. Angew. Chem. Int. Ed. 2008; 47: 3422
  • 3 Sundberg RJ. In Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR. Rees CW. Pergamon; Oxford: 1984: 313
    • 4a Song JJ. Reeves JT. Fandrick DR. Tan Z. Yee NK. Senanayake CH. ARKIVOC 2010; (i): 390
    • 4b Cacchi S. Fabrizi G. Chem. Rev. 2011; 111: PR215
    • 4c Guo T. Huang F. Yu L. Yu Z. Tetrahedron Lett. 2015; 56: 296
  • 5 Maity S. Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
  • 6 Wei Y. Deb I. Yoshikai N. J. Am. Chem. Soc. 2012; 134: 9098
  • 7 Nanjo T. Tsukano C. Takemoto Y. Org. Lett. 2012; 14: 4270
  • 8 Wang Y. Liu L. Zhang L. Chem. Sci. 2013; 4: 739
  • 9 Anxionnat B. Gomez Pardo D. Ricci G. Rossen K. Cossy J. Org. Lett. 2013; 15: 3876
  • 10 Kiruthika SE. Perumal PT. Org. Lett. 2014; 16: 484
  • 11 Besandre R. Jaimes M. May JA. Org. Lett. 2013; 15: 1666
  • 12 Guo T. Jiang Q. Yu Z. Org. Chem. Front. 2015; 2: 1361
  • 13 Otani T. Jiang X. Cho K. Araki R. Kutsumura N. Saito T. Adv. Synth. Catal. 2015; 357: 1483
  • 14 Sayyad M. Nanaji Y. Ghorai MK. J. Org. Chem. 2015; 80: 12659
  • 15 Gschwend HW. Rodriguez HR. Org React. 1979; 26: 1
  • 16 Ghorai MK. Sayyad M. Nanaji Y. Jana S. Chem. Eur. J. 2015; 10: 1480
  • 17 Zardi P. Savoldelli A. Carminati DM. Caselli A. Ragaini F. Gallo E. ACS Catal. 2014; 4: 3820
  • 18 Choi I. Chung H. Park JW. Chung YK. Org. Lett. 2016; 18: 5508
  • 19 Ito Y. Ueda M. Takeda N. Miyata O. Chem. Eur. J. 2016; 22: 2616
  • 20 Taber DF. Tirunahari PK. Tetrahedron 2011; 67: 7195
  • 21 Cacchi S. Fabrizi G. Goggiamani A. Perboni A. Sferrazza A. Stabile P. Org. Lett. 2010; 12: 3279
  • 22 Brand JP. Chevalley C. Waser J. Beilstein J. Org. Chem. 2011; 7: 565
  • 23 Nallagonda R. Rehan M. Ghorai P. Org. Lett. 2014; 16: 4786
  • 24 Zhou B. Yang Y. Tang H. Du J. Feng H. Li Y. Org. Lett. 2014; 16: 3900
  • 25 Panferova LI. Smirnov VO. Levin VV. Kokorekin VA. Struchkova MI. Dilman AD. J. Org. Chem. 2017; 82: 745
  • 26 Miao B. Li S. Li G. Ma S. Org. Lett. 2016; 18: 2556
  • 27 Porcheddu A. Mura MG. De Luca L. Pizzetti M. Taddei M. Org. Lett. 2012; 14: 6112
  • 28 Müller S. Webber MJ. List B. J. Am. Chem. Soc. 2011; 133: 18534
  • 29 Zhan F. Liang G. Angew. Chem. Int. Ed. 2013; 52: 1266
  • 30 Liu B. Song C. Sun C. Zhou S. Zhu J. J. Am. Chem. Soc. 2013; 135: 16625
  • 31 Lu BZ. Wei H.-X. Zhang Y. Zhao W. Dufour M. Li G. Farina V. Senanayake CH. J. Org. Chem. 2013; 78: 4558
  • 32 Zhang M. Xie F. Wang X. Yan F. Wang T. Chen M. Ding Y. RSC Adv. 2013; 3: 6022
  • 33 Jana N. Nguyen Q. Driver TG. J. Org. Chem. 2014; 79: 2781
  • 34 Lim B.-Y. Jung B.-E. Cho C.-G. Org. Lett. 2014; 16: 4492
  • 35 Chen J. He L. Natte K. Neumann H. Beller M. Wu X.-F. Adv. Synth. Catal. 2014; 356: 2955
  • 36 Ye K.-Y. Dai L.-X. You S.-L. Chem. Eur. J. 2014; 20: 3040
  • 37 Lin H. Li S.-S. Dong L. Org. Biomol. Chem. 2015; 13: 11228
  • 38 Sagadevan A. Ragupathi A. Hwang KC. Angew. Chem. Int. Ed. 2015; 54: 13896
    • 39a Sagadevan A. Ragupathi A. Lin C.-C. Hwu JR. Hwang KC. Green Chem. 2015; 17: 1113
    • 39b Mylnikov VS. Zh. Strukt. Khim. 1974; 15: 244
    • 40a Majek M. Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2013; 52: 5919
    • 40b Yam VW.-W. Lo KK.-W. Wong KM.-C. J. Organomet. Chem. 1999; 578: 3
  • 41 Díez-González S. Correa A. Cavallo L. Nolan SP. Chem. Eur. J. 2006; 12: 7558
  • 42 Zhang G. Miao J. Zhao Y. Ge H. Angew. Chem. Int. Ed. 2012; 51: 8318
  • 43 Zhou Z. Liu G. Chen Y. Lu X. Adv. Synth. Catal. 2015; 357: 2944
  • 44 Yan H. Wang H. Li X. Xin X. Wang C. Wan B. Angew. Chem. Int. Ed. 2015; 54: 10613
  • 45 Patureau FW. Besset T. Kuhl N. Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
  • 46 Kim T. Kim K. Tetrahedron Lett. 2010; 51: 868
  • 47 Wang C. Huang Y. Org. Lett. 2013; 15: 5294
  • 48 Haag BA. Zhang Z.-G. Li J.-S. Knochel P. Angew. Chem. Int. Ed. 2010; 49: 9513
  • 49 Jiang H. Gao S. Xu J. Wu X. Lin A. Yao H. Adv. Synth. Catal. 2016; 358: 188
  • 50 Würtz S. Rakshit S. Neumann JJ. Dröge T. Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
  • 51 Shi Z. Zhang C. Li S. Pan D. Ding S. Cui Y. Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
  • 52 Qi Z. Yu S. Li X. Org. Lett. 2016; 18: 700
  • 53 Wu C.-J. Meng Q.-Y. Lei T. Zhong J.-J. Liu W.-Q. Zhao L.-M. Li Z.-J. Chen B. Tung C.-H. Wu L.-Z. ACS Catal. 2016; 6: 4635
  • 54 Zhang Z. Jiang H. Huang Y. Org. Lett. 2014; 16: 5976
  • 55 Miyanaga W. Sugiki M. Ejima C. Tokumasu M. Yoshida T. WO2014/003158 A1, 2014
  • 56 Layek M. Reddy MA. Dhanunjaya Rao AV. Alvala M. Arunasree MK. Islam A. Mukkanti K. Iqbal J. Pal M. Org. Biomol. Chem. 2011; 9: 1004
  • 57 Ding M. He F. Hudyma TW. Zheng X. Poss MA. Kadow JF. Beno BR. Rigat KL. Wang Y.-K. Fridell RA. Lemm JA. Qiu D. Liu M. Voss S. Pelosi LA. Roberts SB. Gao M. Knipe J. Gentles RG. Bioorg. Med. Chem. Lett. 2012; 22: 2866
    • 58a Zhao D. Shi Z. Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12426
    • 58b Xu L. Zhu Q. Huang G. Cheng B. Xia Y. J. Org. Chem. 2012; 77: 3017
  • 59 Zhou S. Wang J. Zhang F. Song C. Zhu J. Org. Lett. 2016; 18: 2427
  • 60 Li DY. Chen HJ. Liu PN. Org. Lett. 2014; 16: 6176
  • 61 Zhang Z.-Z. Liu B. Xu J.-W. Yan S.-Y. Shi B.-F. Org. Lett. 2016; 18: 1776
  • 62 Zhou S. Wang J. Wang L. Chen K. Song C. Zhu J. Org. Lett. 2016; 18: 3806
  • 63 Hu Z. Tong X. Liu G. Org. Lett. 2016; 18: 2058
  • 64 Zhang X. Guo R. Zhao X. Org. Chem. Front. 2015; 2: 1334
  • 65 Jiang B. Li Q.-Y. Tu S.-J. Li G. Org. Lett. 2012; 14: 5210
  • 66 Jang YH. Youn SW. Org. Lett. 2014; 16: 3720
  • 67 Li Y.-L. Li J. Ma A.-L. Huang Y.-N. Deng J. J. Org. Chem. 2015; 80: 3841
  • 68 Gore S. Baskaran S. König B. Org. Lett. 2012; 14: 4568
  • 69 Zhang J. Yin Z. Leonard P. Wu J. Sioson K. Liu C. Lapo R. Zheng S. Angew. Chem. Int. Ed. 2013; 52: 1753