Synlett 2018; 29(11): 1421-1429
DOI: 10.1055/s-0037-1609682
account
© Georg Thieme Verlag Stuttgart · New York

Cobalt-Catalyzed Hydroboration and Borylation of Alkenes and Alkynes

Ziqing Zuo
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: huangzh@sioc.ac.cn
,
Huanan Wen
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: huangzh@sioc.ac.cn
,
Guixia Liu
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: huangzh@sioc.ac.cn
,
Zheng Huang*
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: huangzh@sioc.ac.cn
› Author Affiliations

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (21432011, 21572255, 21732006)
Further Information

Publication History

Received: 21 March 2018

Accepted after revision: 21 March 2018

Publication Date:
23 April 2018 (online)


Abstract

Incorporation of the boryl moiety across a carbon–carbon multiple bond is a powerful method for the synthesis of organoboron compounds. This kind of transformation could be realized with high chemo-, regio-, and stereoselectivity by using an appropriate transition-metal catalyst. This account summarizes the latest advances from our group in the area of cobalt-catalyzed hydroboration and borylation of alkenes and alkynes, which lead to the formation of a variety of organoboron compounds, including alkylboronates, 1,1,1-tris(boronates), 1,1-diborylalkenes, and 1,1-diboronates.

1 Introduction

2 Cobalt-Catalyzed Hydroboration of Alkenes

3 Cobalt-Catalyzed Dehydrogenative Borylations-Hydroboration

4 Cobalt-Catalyzed Double Dehydrogenative Borylations of 1-Alkenes

5 Cobalt-Catalyzed Hydroboration of Terminal Alkynes

6 Summary and Outlook

 
  • References

  • 1 Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. John Wiley & Sons; Weinheim: 2006
  • 2 Miyaura N. Yamada K. Suzuki A. Tetrahedron Lett. 1979; 3437
    • 3a Wada R. Shibuguchi T. Makino S. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc. 2006; 128: 7687
    • 3b Rauniyar V. Zhai H. Hall DG. J. Am. Chem. Soc. 2008; 130: 8481
    • 3c Althaus M. Mahmood A. Suárez JR. Thomas SP. Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 4025
    • 3d Hesse MJ. Essafi S. Watson CG. Harvey JN. Hirst D. Willis CL. Aggarwal VK. Angew. Chem. Int. Ed. 2014; 53: 6145
    • 4a Stymiest JL. Bagutski V. French RM. Aggarwal VK. Nature 2008; 456: 778
    • 4b Mlynarski SN. Karns AS. Morken JP. J. Am. Chem. Soc. 2012; 134: 16449
    • 5a Xu J. Xiao B. Xie C.-Q. Luo D.-F. Liu L. Fu Y. Angew. Chem. Int. Ed. 2012; 51: 12551
    • 5b Li Z. Wang Z. Zhu L. Tan X. Li C. J. Am. Chem. Soc. 2014; 136: 16439
  • 6 Brown HC. Kramer GW. Levy AB. Midland MM. Organic Syntheses via Boranes. Wiley; New York: 1975

    • For some reviews, see:
    • 7a Carroll A.-M. O’Sullivan TP. Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 7b Vogels CM. Westcott SA. Curr. Org. Chem. 2005; 9: 687
    • 7c Collins BS. L. Wilson CM. Myers EL. Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700

    • For some examples, see:
    • 7d Männig D. Nöth H. Angew. Chem. Int. Ed. Engl. 1985; 24: 878
    • 7e Evans DA. Fu GC. Hoveyda AH. J. Am. Chem. Soc. 1988; 110: 6917
    • 7f Burgess K. Van der Donk WA. Westcott SA. Marder TB. Baker RT. Calabrese JC. J. Am. Chem. Soc. 1992; 114: 9350
    • 7g Evans DA. Fu GC. Anderson BA. J. Am. Chem. Soc. 1992; 114: 6679
    • 7h Dang L. Zhao H. Lin Z. Marder TB. Organometallics 2008; 27: 1178
    • 8a Tucker CE. Davidson J. Knochel P. J. Org. Chem. 1992; 57: 3482
    • 8b Westcott SA. Marder TB. Baker RT. Organometallics 1993; 12: 975
    • 8c Pereira S. Srebnik M. J. Am. Chem. Soc. 1996; 118: 909
    • 8d Crudden CM. Edwards D. Eur. J. Org. Chem. 2003; 4695
    • 8e Crudden CM. Hleba YB. Chen AC. J. Am. Chem. Soc. 2004; 126: 9200
    • 8f Mkhalid IA. I. Coapes RB. Edes SN. Coventry DN. Souza FE. S. Thomas RL. Hall JJ. Bi S.-W. Lin Z. Marder TB. Dalton Trans. 2008; 1055
    • 8g Lata CJ. Crudden CM. J. Am. Chem. Soc. 2010; 132: 131
    • 8h Smith SM. Takacs JM. J. Am. Chem. Soc. 2010; 132: 1740
    • 8i Smith SM. Takacs JM. Org. Lett. 2010; 12: 4612
    • 8j Cid J. Carbó JJ. Fernández E. Chem. Eur. J. 2012; 18: 1512
    • 8k Oshima K. Ohmura T. Suginome M. J. Am. Chem. Soc. 2012; 134: 3699
    • 8l Yang Z.-D. Pal R. Hoang GL. Zeng XC. Takacs JM. ACS Catal. 2014; 4: 763
    • 8m Shoba VM. Thacker NC. Bochat AJ. Takacs JM. Angew. Chem. Int. Ed. 2016; 55: 1465
    • 9a Brinkman JA. Nguyen TT. Sowa JR. Org. Lett. 2000; 2: 981
    • 9b Ohmura T. Yamamoto Y. Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990
    • 9c Luna AP. Bonin M. Micouin L. Husson HP. J. Am. Chem. Soc. 2002; 124: 12098
    • 9d Yamamoto Y. Fujikawa R. Umemoto T. Miyaura N. Tetrahedron 2004; 60: 10695
    • 9e Black A. Brown JM. Pichon C. Chem. Commun. 2005; 5284
    • 9f Cipot J. Vogels CM. McDonald R. Westcott SA. Stradiotto M. Organometallics 2006; 25: 5965
    • 9g Mazet C. Gerard D. Chem. Commun. 2011; 298
    • 10a Suginome M. Matsuda T. Yoshimoto T. Ito Y. Org. Lett. 1999; 1: 1567
    • 10b Suginome M. Shirakura M. Yamamoto A. J. Am. Chem. Soc. 2006; 128: 14438
    • 10c Ely RJ. Morken JP. J. Am. Chem. Soc. 2010; 132: 2534
    • 10d Ely RJ. Yu Z. Morken JP. Tetrahedron Lett. 2015; 56: 3402

      For some reviews, see:
    • 11a Alfaro R. Parra A. Alemán J. Tortosa M. Synlett 2013; 24: 804
    • 11b Yun J. Asian J. Org. Chem. 2013; 2: 1016
    • 11c Semba K. Fujihara T. Terao J. Tsuji Y. Tetrahedron 2015; 71: 2183

    • For some examples, see:
    • 11d Mun S. Lee J.-E. Yun J. Org. Lett. 2006; 8: 4887
    • 11e Lee J.-E. Kwon J. Yun J. Chem. Commun. 2008; 733
    • 11f Lee Y. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
    • 11g Noh D. Chea H. Ju J. Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
    • 11h Asaki Y. Zhong C. Sawamura M. Ito H. J. Am. Chem. Soc. 2010; 132: 1226
    • 11i Jang H. Zhugralin AR. Lee Y. Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
    • 11j Sasaki Y. Horita Y. Zhong C. Sawamura M. Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
    • 11k Corberán R. Mszar NW. Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
    • 12a Catalysis without Precious Metals. Bullock RM. Wiley-VCH; Weinheim: 2010
    • 12b Iron Catalysis in Organic Chemistry: Reactions and Applications. Plietker B. Wiley-VCH; Weinheim, Germany: 2008
    • 12c Chakraborty S. Bhattacharya P. Dai H. Guan H. Acc. Chem. Res. 2015; 48: 1995
    • 12d Li Y.-Y. Yu S.-L. Shen W.-Y. Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
    • 13a Tseng KN. T. Kampf JW. Szymczak NK. ACS Catal. 2015; 5: 411
    • 13b Espinal-Viguri M. Woof CR. Webster RL. Chem. Eur. J. 2016; 22: 11605
    • 13c MacNair AJ. Millet CR. P. Nichol GS. Ironmonger A. Thomas SP. ACS Catal. 2016; 6: 7217
    • 13d Chen X. Cheng Z. Lu Z. Org. Lett. 2017; 19: 969
  • 14 Wu JY. Moreau BT. Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
    • 15a Cao Y. Zhang Y. Zhang L. Zhang D. Leng X. Huang Z. Org. Chem. Front. 2014; 1: 1101
    • 15b Zhang L. Peng D. Leng X. Huang Z. Angew. Chem. Int. Ed. 2013; 52: 3676
    • 16a Obligacion JV. Chirik PJ. Org. Lett. 2013; 15: 2680
    • 16b Greenhalgh MD. Thomas SP. Chem. Commun. 2013; 11230
  • 17 Wang C. Wu C. Ge S. ACS Catal. 2016; 6: 7585

    • For a review, see:
    • 18a Yoshida H. ACS Catal. 2016; 6: 1799

    • For some recent examples, see:
    • 18b Rawat VS. Sreedhar B. Synlett 2014; 25: 1132
    • 18c Khan A. Asiri AM. Kosa SA. Garcia H. Grirrane A. J. Catal. 2015; 329: 401
    • 18d Gorgas N. Alves LG. Stöger B. Martins AM. Veiros LF. Kirchner K. J. Am. Chem. Soc. 2017; 139: 8130
  • 19 Nakagawa N. Hatakeyama T. Nakamura M. Chem. Eur. J. 2015; 21: 4257
    • 20a Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
    • 20b Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 20c Du X. Huang Z. ACS Catal. 2017; 7: 1227
  • 21 Zaidlewicz M. Meller J. Tetrahedron Lett. 1997; 38: 7279
  • 22 Zhang L. Zuo Z. Leng X. Huang Z. Angew. Chem. Int. Ed. 2014; 53: 2696
    • 23a Obligacion JV. Chirik PJ. J. Am. Chem. Soc. 2013; 135: 19107
    • 23b Peng J. Docherty JH. Dominey AP. Thomas SP. Chem. Commun. 2017; 4726
    • 23c Ibrahim AD. Entsminger SW. Fout AR. ACS Catal. 2017; 7: 3730
    • 23d Reilly SW. Webster CE. Hollis TK. Valle HU. Dalton Trans. 2016; 2823
  • 24 For a Co-catalyzed diborylation of 1,1-distubstituted vinylarenes, see: Teo WJ. Ge S. Angew. Chem. Int. Ed. 2018; 57: 1654
    • 25a Ruddy AJ. Sydora OL. Small BL. Stradiotto M. Turculet L. Chem. Eur. J. 2014; 20: 13918
    • 25b Palmer WN. Diao T. Pappas I. Chirik PJ. ACS Catal. 2015; 5: 622
    • 25c Ogawa T. Ruddy AJ. Sydora OL. Stradiotto M. Turculet L. Organometallics 2017; 36: 417
    • 25d Scheuermann ML. Johnson EJ. Chirik PJ. Org. Lett. 2015; 17: 2716
  • 26 Zhang L. Zuo Z. Wan X. Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
    • 27a Cui X. Burgess K. Chem. Rev. 2005; 105: 3272
    • 27b Roseblade SJ. Pfaltz A. Acc. Chem. Res. 2007; 40: 1402
    • 27c Thomas SP. Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1896
    • 27d Verendel JJ. Pàmies O. Diéguez M. Andersson PG. Chem. Rev. 2014; 114: 2130
  • 28 Chen J. Xi T. Ren X. Cheng B. Guo J. Lu Z. Org. Chem. Front. 2014; 1: 1306
  • 29 Chen J. Xi T. Lu Z. Org. Lett. 2014; 16: 6452
  • 30 Zhang H. Lu Z. ACS Catal. 2016; 6: 6596
    • 31a Zuo Z. Yang J. Huang Z. Angew. Chem. Int. Ed. 2016; 55: 10839
    • 31b Guo J. Lu Z. Angew. Chem. Int. Ed. 2016; 55: 10835
  • 32 Zhang L. Huang Z. J. Am. Chem. Soc. 2015; 137: 15600
    • 33a Castle RB. Matteson DS. J. Organomet. Chem. 1969; 20: 19
    • 33b Matteson DS. Synthesis 1975; 147
    • 33c Baker RT. Nguyen P. Marder TB. Westcott SA. Angew. Chem. Int. Ed. Engl. 1995; 34: 1336
    • 33d Marder TB. Norman NC. Top. Catal. 1998; 5: 63
    • 33e Bluhm M. Maderna A. Pritzkow H. Bethke S. Gleiter R. Siebert W. Eur. J. Inorg. Chem. 1999; 1693
    • 33f Gu Y. Pritzkow H. Siebert W. Eur. J. Inorg. Chem. 2001; 373
    • 33g Nguyen P. Coapes RB. Woodward AD. Taylor NJ. Burke JM. Howard JA. K. Marder TB. J. Organomet. Chem. 2002; 652: 77
    • 33h Mita T. Ikeda Y. Michigami K. Sato Y. Chem. Commun. 2013; 5601
    • 33i Palmer WN. Obligacion JV. Pappas I. Chirik PJ. J. Am. Chem. Soc. 2016; 138: 766
    • 33j Palmer WN. Zarate C. Chirik PJ. J. Am. Chem. Soc. 2017; 139: 2589
  • 34 Krautwald S. Bezdek MJ. Chirik PJ. J. Am. Chem. Soc. 2017; 139: 3868
  • 35 Wen H. Zhang L. Zhu S. Liu G. Huang Z. ACS Catal. 2017; 7: 6419
  • 36 Zuo Z. Huang Z. Org. Chem. Front. 2016; 3: 434
    • 37a Brown HC. Gupta SK. J. Am. Chem. Soc. 1975; 97: 5249
    • 37b Pereira S. Srebnik M. Organometallics 1995; 14: 3127
    • 37c Pereira S. Srebnik M. Tetrahedron Lett. 1996; 37: 3283
    • 37d He X. Hartwig JF. J. Am. Chem. Soc. 1996; 118: 1696
  • 38 Obligacion JV. Neely JM. Yazdani AN. Pappas I. Chirik PJ. J. Am. Chem. Soc. 2015; 137: 5855