Synthesis 2019; 51(02): 371-383
DOI: 10.1055/s-0037-1609638
short review
© Georg Thieme Verlag Stuttgart · New York

Applications of Rozen’s Reagent in Oxygen-Transfer and C–H Activation Reactions

a  Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: [email protected]
,
Kulbir Kulbir
a  Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: [email protected]
,
Tarang Gupta
b  Chemistry Department, D. A. V. College for Girls, Yamunanagar, Haryana, 135001, India
,
Rajneesh Kaur
a  Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: [email protected]
,
Raman Singh
a  Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: [email protected]
› Author Affiliations
Science and engineering research board (SERB), New Delhi is acknowledged for funding (CS/2014/017).
Further Information

Publication History

Received: 10.10.2018/

Accepted after revision: 11 October 2018

Publication Date:
22 November 2018 (online)


Dedicated to Professor Shlomo Rozen for his pioneering work in developing the best oxygen-transfer reagent.

Abstract

Rozen’s reagent (hypofluorous acid–acetonitrile complex, HOF·MeCN) is a robust nonspecific oxygen-transfer reagent and became a proven tool for the oxidation of difficult-to-oxidize molecules. It has been applied to instant oxygen transfers to functional groups such as alkenes, alkynes, and aromatic hydrocarbons, epoxidation, oxidation of alcohols, amines, and alkynes, oxygen-transfer reactions with nitrogen, phosphorus, and sulfur-containing substrates, and α-hydroxylation of carbonyl groups. Apart from being a potential green oxidizing agent, the complex has applications in 18O-labeling and C–H functionalization strategies. Recent uses of Rozen’s reagent in developing nanomaterials and oxidized expanded graphite indicate the enormous potential of the reagent. These aspects are discussed in this review.

1 Introduction

2 Synthesis and Physical Properties

3 Safety and Handling

4 Oxygen-Transfer Reactions

4.1 General Mechanism of Oxygen Transfer

4.2 Epoxidation

4.3 Oxidation of Alkynes

4.4 Oxidation of Aromatic Alcohols and Phenols

4.5 Oxidation of Nitrogen-Containing Compounds

4.6 Conversion of Aldehydes into Nitriles

4.7 Oxidation of Alcohols and Ethers

4.8 Oxidation of Sulfur-Containing Compounds

4.9 Oxygen-Transfer Reaction with Phosphine, Phosphite, and Phosphinite Compounds

5 C–H Activation Reactions

5.1 Hydroxylation of Nonactivated Tertiary Saturated Carbon Center

5.2 Hydroxylation of Aromatic Carbon Center

5.3 α-Hydroxylation of Carbonyl Group

5.4 Activation of α-Hydrogens of α-Amino Acids

6 Other Uses

7 Green Chemistry and Rozen’s Reagent

8 Experimental Problems

9 Further Applications

10 Conclusions

 
  • References

  • 1 Rozen S. Acc. Chem. Res. 2014; 47: 2378
  • 2 Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Agents. Burke SD, Danheiser RL. Wiley; Chichester: 1999
  • 3 Handbook of Reagents for Organic Synthesis: Catalytic Oxidation Reagents. Fuchs PL. Wiley; Chichester: 2013: 782
  • 4 Rozen S. In Encyclopedia of Reagents for Organic Synthesis. Wiley; Chichester: 2003: 1-5
  • 5 Rozen S. Pure Appl. Chem. 1999; 71: 481
  • 6 Rozen S. Chem. Rev. 1996; 96: 1717
  • 7 Rozen S, Brand M, Kol M. J. Am. Chem. Soc. 1989; 111: 8325
  • 8 Srnec M, Ončák M, Zahradník R. J. Phys. Chem. A 2008; 112: 3631
  • 9 Nikitin IV. Russ. Chem. Rev. 2004; 73: 609
  • 10 Appelman EH, Jache AW. J. Am. Chem. Soc. 1987; 109: 1754
  • 11 Studier MH, Appelman EH. J. Am. Chem. Soc. 1971; 93: 2349
  • 12 Appelman EH. Acc. Chem. Res. 1973; 6: 113
  • 13 Murray CB, Sandford G. US Patent 8609873, 2007
  • 14 Appelman EH, Dunkelberg O, Kol M. J. Fluorine Chem. 1992; 56: 199
  • 15 Dayan S. Kol M. Rozen S. Synthesis 1999; 1427
  • 16 Dunkelberg O, Haas A, Klapdor MF, Mootz D, Poll W, Appelman EH. Chem. Ber. 1994; 127: 1871
  • 17 Poll W, Pawelke G, Mootz D, Appelman EH. Angew. Chem. Int. Ed. 1988; 27: 392
  • 18 Berski S, Lundell J, Latajka Z, Leszczyński J. J. Phys. Chem. A 1998; 102: 10768
  • 19 Sertchook R, Boese AD, Martin JM. L. J. Phys. Chem. A 2006; 110: 8275
  • 20 Berski S, Silvi B, Latajka Z, Leszczyński J. J. Chem. Phys. 1999; 111: 2542
  • 21 Carmeli M, Shefer N, Rozen S. Tetrahedron Lett. 2006; 47: 8969
  • 22 Rozen S, Bareket Y, Kol M. Tetrahedron 1993; 49: 8169
  • 23 Rozen S, Kol M. J. Org. Chem. 1990; 55: 5155
  • 24 Rozen S, Bareket YY, Blum J. Tetrahedron Lett. 1997; 38: 2333
  • 25 Rozen S. Eur. J. Org. Chem. 2005; 2433
  • 26 Rozen S, Bareket Y, Dayan S. Tetrahedron Lett. 1996; 37: 531
  • 27 Rücker C, Seppelt W, Fritz H, Prinzbach H. Chem. Ber. 1984; 117: 1801
  • 28 Golan E, Hagooly A, Rozen S. Tetrahedron Lett. 2004; 45: 3397
  • 29 McPake CB, Murray CB, Sandford G. Tetrahedron Lett. 2009; 50: 1674
  • 30 Dayan S, Ben-David I, Rozen S. J. Org. Chem. 2000; 65: 8816
  • 31 Kol M, Rozen S. J. Org. Chem. 1993; 58: 1593
  • 32 Rozen S, Kol M. J. Org. Chem. 1992; 57: 7342
  • 33 Kotha S, Goyal D, Chavan AS. J. Org. Chem. 2013; 78: 12288
  • 34 Rozen S, Bar-Haim A, Mishani E. J. Org. Chem. 1994; 59: 1208
  • 35 Harel T, Rozen S. J. Org. Chem. 2007; 72: 6500
  • 36 Kol M, Rozen S. J. Chem. Soc., Chem. Commun. 1991; 3: 567
  • 37 Dirk SM, Mickelson ET, Henderson JC, Tour JM. Org. Lett. 2000; 2: 3405
  • 38 Emmons WD. J. Am. Chem. Soc. 1954; 76: 3468
  • 39 Nielsen AT, Atkins RL, Norris WP, Coon CL, Sitzmann ME. J. Org. Chem. 1980; 45: 2341
  • 40 Emmons WD. J. Am. Chem. Soc. 1957; 79: 5528
  • 41 McKillop AA, Tarbin J. Tetrahedron Lett. 1983; 24: 1505
  • 42 Zhdankin VV, Stang PJ. Tetrahedron 1998; 54: 10927
  • 43 Golan E, Rozen S. J. Org. Chem. 2003; 68: 9170
  • 44 Mfuh AM, Larionov OV. Curr. Med. Chem. 2015; 22: 2819
  • 45 Gatenyo J, Johnson K, Rajapakse A, Gates KS, Rozen S. Tetrahedron 2012; 68: 8942
  • 46 Chavez DE, Parrish DA, Mitchell L, Imler GH. Angew. Chem. Int. Ed. 2017; 56: 3575
  • 47 Carmeli M, Rozen S. J. Org. Chem. 2005; 70: 2131
  • 48 Rozen S, Dayan S. Angew. Chem. Int. Ed. 1999; 38: 3471
  • 49 Aitken RA, Fodi B, Palmer MH, Slawin AM. Z, Yang J. Tetrahedron 2012; 68: 5845
  • 50 Rozen S, Shaffer A. Org. Lett. 2017; 19: 4707
  • 51 Rozen S, Bareket Y. J. Org. Chem. 1997; 62: 1457
  • 52 Amir E, Rozen S. Chem. Commun. 2006; 2262
  • 53 Harel T, Shefer N, Hagooly Y, Rozen S. Tetrahedron 2010; 66: 3297
  • 54 Carmeli M, Rozen S. J. Org. Chem. 2006; 71: 5761
  • 55 Rozen S, Carmeli M. J. Am. Chem. Soc. 2003; 125: 8118
  • 56 Carmeli M, Rozen S. J. Org. Chem. 2006; 71: 4585
  • 57 Altamura A, D’Accolti L, Detomaso A, Dinoi A, Fiorentino M, Fusco C, Curci R. Tetrahedron Lett. 1998; 39: 2009
  • 58 Rudler H, Denise B. Chem. Commun. 1998; 2145
  • 59 Carmeli M, Rozen S. Tetrahedron Lett. 2006; 47: 763
  • 60 Rozen S, Dayan S, Bareket Y. J. Org. Chem. 1995; 60: 8267
  • 61 The Chemistry of Sulphur-containing Functional Groups. In The Chemistry of Functional Groups. Patai S, Rappoport Z. Wiley; Chichester: 1993. Suppl. S
  • 62 Organic Chemistry of Sulfur. Oae S. Springer; New York: 2012
  • 63 Low JZ, Capozzi B, Cui J, Wei S, Venkataraman L, Campos LM. Chem. Sci. 2017; 8: 3254
  • 64 Harel T, Amir E, Rozen S. Org. Lett. 2006; 8: 1213
  • 65 Beckerbauer R, Smart BE, Bareket Y, Rozen S. J. Org. Chem. 1995; 60: 6186
  • 66 Morais GR, Humphrey AJ, Falconer RA. Tetrahedron 2008; 64: 7426
  • 67 Fischer NH. Synthesis 1970; 393
  • 68 Amir E, Amir RJ, Campos LM, Hawker CJ. J. Am. Chem. Soc. 2011; 133: 10046
  • 69 Dell EJ, Campos LM. J. Mater. Chem. 2012; 22: 12945
  • 70 Shefer N, Harel T, Rozen S. J. Org. Chem. 2009; 74: 6993
  • 71 Shefer N, Rozen S. J. Org. Chem. 2010; 75: 4623
  • 72 Harel T, Rozen S. J. Org. Chem. 2010; 75: 3141
  • 73 Oliva MM, Casado J, Navarrete JT. L, Patchkovskii S, Goodson T, Harpham MR, Seixas de Melo JS, Amir E, Rozen S. J. Am. Chem. Soc. 2010; 132: 6231
  • 74 Amir E, Rozen S. Angew. Chem. Int. Ed. 2005; 44: 7374
  • 75 Potash S, Rozen S. J. Org. Chem. 2011; 76: 7245
  • 76 Potash S, Rozen S. Chem. Eur. J. 2013; 19: 5289
  • 77 Shefer N, Rozen S. J. Org. Chem. 2011; 76: 4611
  • 78 Di Maria F, Zanelli A, Liscio A, Kovtun A, Salatelli E, Mazzaro R, Morandi V, Bergamini G, Shaffer A, Rozen S, Di M F, Zanelli A, Liscio A, Kovtun A, Liscio A, Salatelli E, Mazzaro R, Bergamini G, Mazzaro R, Morandi V, Shaffer A, Rozen S. ACS Nano 2017; 11: 1991
  • 79 Shefer N, Carmeli M, Rozen S. Tetrahedron Lett. 2007; 48: 8178
  • 80 Peng W, Shreeve JM. J. Fluorine Chem. 2005; 126: 1054
  • 81 Gini A, Brandhofer T, Mancheño OG. Org. Biomol. Chem. 2017; 15: 1294
  • 82 Neumann R, Khenkin AM, Dahan M. Angew. Chem. Int. Ed. 1995; 34: 1587
  • 83 Chen B.-C, Zhou P, Davis F, Ciganek E. In Organic Reactions . Wiley; Hoboken: 2003: 1-356
  • 84 Dayan S, Bareket Y, Rozen S. Tetrahedron 1999; 55: 3657
  • 85 Gatenyo J, Vints I, Rozen S. Chem. Commun. 2013; 49: 7379
  • 86 Amir E. WO2017179047A1, 2017
  • 87 Potash S, Rozen S. Eur. J. Org. Chem. 2013; 5574
  • 88 Tavener SJ, Clark JH. J. Fluorine Chem. 2003; 123: 31
  • 89 Tavener SJ, Clark JH. In Fluorine and the Environment . Vol. 2. Tressaud A. Elsevier; New York: 2006: 177-202
  • 90 Chambers RD, Holling D, Rees AJ, Sandford G. J. Fluorine Chem. 2003; 119: 81