Synthesis 2018; 50(15): 3006-3014
DOI: 10.1055/s-0037-1609586
special topic
© Georg Thieme Verlag Stuttgart · New York

Ti(III)-Mediated Radical-Induced Approach to a Bicyclic δ-Lactone with a Bridgehead β-Hydroxy Group

Dipendu Das
Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India   Email: tushar@iisc.ac.in
,
Hina P. A. Khan
Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India   Email: tushar@iisc.ac.in
,
Tushar Kanti Chakraborty*
Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India   Email: tushar@iisc.ac.in
› Author Affiliations
Further Information

Publication History

Received: 21 June 2018

Accepted after revision: 25 June 2018

Publication Date:
05 July 2018 (online)

Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

Herein, we portray a synthetic route to a bicyclic lactone containing a bridgehead hydroxy group, a structure that is present in many natural products of biological and medicinal relevance. Ethyl (E)-3-(dimethylphenylsilyl)-7,8-epoxyoct-2-enoate underwent radical-mediated­ reductive epoxide opening with concomitant intramolecular cyclization using Cp2Ti(III)Cl to give cis-6-(dimethylphenylsilyl)-3-oxabicyclo[4.3.0]nonan-4-one, a bicyclic lactone with a bridgehead silyl group serving as a masked hydroxy group. Furthermore, the bridgehead C–Si bond underwent stereoretentive oxidative cleavage to give cis-6-hydroxy-3-oxabicyclo[4.3.0]nonan-4-one in high yield under Tamao–Fleming oxidation conditions; this demonstrates the potential utility of this strategy in the synthesis of many natural products bearing similar hydroxylated bridgehead chiral center embedded in a bicyclic lactone framework.

Supporting Information

 
  • References

    • 1a Walling C. Tetrahedron 1985; 41: 3887
    • 1b Ingold KU. Pure Appl. Chem. 1997; 69: 241
  • 3 Green ML. H. Lucas CR. J. Chem. Soc., Dalton Trans. 1972; 1000
  • 4 Nugent WA. RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
  • 5 For a model study towards penifulvin A, see: Chakraborty TK. Chattopadhyay AK. Samanta R. Ampapathi RS. Tetrahedron Lett. 2010; 51: 4425
  • 6 Das D. Kant R. Chakraborty TK. Org. Lett. 2014; 16: 2618
    • 7a Singh N. Pulukuri KK. Chakraborty TK. Tetrahedron 2015; 71: 4608
    • 7b Basu S. Kandiyal PS. Ampapathi RS. Chakraborty TK. RSC Adv. 2013; 3: 13630
    • 7c Chakraborty TK. Samanta R. Kumar PK. Tetrahedron 2009; 65: 6925
    • 7d Chakraborty TK. Chattopadhyay AK. Ghosh S. Tetrahedron Lett. 2007; 48: 1139
    • 7e Chakraborty TK. Sudhakar G. Tetrahedron Lett. 2006; 47: 5847
    • 7f Chakraborty TK. Tapadar S. Tetrahedron Lett. 2003; 44: 2541
    • 7g Chakraborty TK. Das S. J. Indian Chem. Soc. 1999; 76: 611
    • 8a Gansäuer A. Justicia J. Fan C.-A. Worgull D. Piestert F. Top. Curr. Chem. 2007; 279: 25
    • 8b Barrero AF. Quílez del Moral JF. Sánchez EM. Arteaga JF. Eur. J. Org. Chem. 2006; 1627
    • 8c Cuerva JM. Justicia J. Oller-López JL. Oltra JE. Top. Organomet. Chem. 2006; 63
    • 8d Rossi B. Prosperini S. Pastori N. Clerici A. Punta C. Molecules 2012; 17: 14700
    • 8e Gansäuer A. Fleckhaus A. Epoxides in Titanocenes-Mediated and - Catalyzed Radical Reactions . In Encyclopedia of Radicals in Chemistry, Biology and Materials . Vol. 2 Chatgilialoglu C. Studer A. Wiley; Chichester: 2012: 989-1001
  • 9 Morcillo SP. Miguel D. Campaña AG. de Cienfuegos LA. Justicia J. Cuerva JM. Org. Chem. Front. 2014; 1: 15
    • 10a Chakraborty TK. Das S. Tetrahedron Lett. 2002; 43: 2313
    • 10b Chakraborty TK. Dutta S. J. Chem. Soc., Perkin Trans. 1 1997; 1257
    • 11a Sreekanth M. Pranitha G. Jagadeesh B. Chakraborty TK. Tetrahedron Lett. 2011; 52: 1709
    • 11b Chakraborty TK. Samanta R. Das S. J. Org. Chem. 2006; 71: 3321
  • 12 Chakraborty TK. Samanta R. Ravikumar K. Tetrahedron Lett. 2007; 48: 6389
  • 13 Chakraborty TK. Samanta R. Roy S. Sridhar B. Tetrahedron Lett. 2009; 50: 3306
  • 14 Das D. Chakraborty TK. Org. Lett. 2017; 19: 682
  • 15 Trost B. Krische MJ. J. Am. Chem. Soc. 1999; 121: 6131
    • 16a Johnson CN. Erlanson DA. Murray CW. Rees DC. J. Med. Chem. 2017; 60: 89
    • 16b Hu Y. Stumpfe D. Bajorath J. J. Med. Chem. 2017; 60: 1238
    • 16c Allred TK. Manoni F. Harran PG. Chem. Rev. 2017; 117: 11994
    • 16d Barnes EC. Kumar R. Davis RA. Nat. Prod. Rep. 2016; 33: 372
    • 16e Vasilevich NI. Kombarov RV. Genis DV. Kirpichenok MA. J. Med. Chem. 2012; 55: 7003
    • 16f Hoppen S. Emde U. Friedrich T. Grubert L. Koert U. Angew. Chem. Int. Ed. 2000; 39: 2099
    • 16g Tietze LF. Schneider G. Wölfling J. Nöbel T. Wulff C. Schubert I. Rübeling A. Angew. Chem. Int. Ed. 1998; 37: 2469
    • 16h Wang J. De Clerq PJ. Angew. Chem., Int. Ed. Engl. 1995; 34: 1749
    • 16i Depew KM. Zeman M. Boyer SH. Denhart DJ. Ikemoto N. Crothers DM. Danishefsky SJ. Angew. Chem., Int. Ed. Engl. 1996; 35: 2797
    • 17a El-Naggar LJ. Beal JL. J. Nat. Prod. 1980; 43: 649
    • 17b Boros CA. Stermitz FR. J. Nat. Prod. 1991; 54: 1173
    • 17c Murai, F.; Tagawa, M.; 29th Symposium on the Chemistry of Terpenes, Essential Oils, and Aromatics, Tsu, Japan, 1985; 286
    • 17d Schneider K. Jurenitsch J. Jentzsch K. Sci. Pharm. 1986; 54: 339
    • 17e Topcu G. Che C.-T. Cordell GA. Ruangrungsi N. Phytochemistry 1990; 29: 3197
    • 17f Garbarino JA. Nicoletti M. Heterocycles 1989; 28: 697
    • 17g Bianco A. Passacantilli P. Garbarino JA. Gambaro V. Serafini M. Nicoletti M. Rispoli C. Righi G. Planta Med. 1991; 57: 286
    • 17h Bianco A. De Luca A. Mazzei RA. Nicoletti M. Passacantilli P. De Lima RA. Phytochemistry 1994; 35: 1485
    • 17i Murai F. Tagawa M. Matsuda S. Kikuchi T. Uesato S. Inouye H. Phytochemistry 1985; 24: 2329
    • 18a Cavill GW. K. Pure Appl. Chem. 1960; 10: 169
    • 18b Sakan T. Murai F. Isoe S. Hyeon SB. Hayashi Y. Nippon Kagaku Zasshi 1969; 90: 507
    • 18c Thomas AF. The Total Synthesis of Natural Products . Vol. 2 ApSimon J. John Wiley and Sons; New York: 1973: 1
  • 19 Trost BM. Haffner CD. Jebaratnam DJ. Krische MJ. Thomas AP. J. Am. Chem. Soc. 1999; 121: 6183
    • 20a Tamao K. Ishida N. Kumada M. Henning R. Plaut HE. J. Org. Chem. 1983; 48: 2120
    • 20b Tamao K. Ishida N. Tanaka T. Kumada M. Organometallics 1983; 2: 1694
    • 20c Fleming I. Henning R. Plaut H. J. Chem. Soc., Chem. Commun. 1984; 29
    • 20d Fleming I. Henning R. Parker DC. Plaut HE. Sanderson PE. J. J. Chem. Soc., Perkin Trans. 1 1995; 317
    • 20e Okamoto K. Tamura E. Ohe K. Angew. Chem. Int. Ed. 2014; 53: 10195
    • 20f Peng Z.-H. Woerpel KA. Org. Lett. 2000; 2: 1379
  • 21 Langer P. Eckardt T. Stoll M. Org. Lett. 2000; 2: 2991
  • 22 Hiyoshizo K. Yasuyuki U. Isao K. Masamitsu O. Chem. Lett. 1988; 927
  • 23 Ohba M. Haneishi T. Fujii T. Heterocycles 1994; 38: 2253
    • 24a Chuang T.-H. Fang J.-M. Jiaang W.-T. Tsai Y.-M. J. Org. Chem. 1996; 61: 1794
    • 24b Bonini BF. Comes-Franchini M. Foehi M. Mazzanti G. Rieei A. Tetrahedron 1996; 52: 4803
    • 24c Unger R. Weisser F. Chinkov N. Stanger A. Cohen T. Marek I. Org. Lett. 2009; 11: 1853
    • 24d Unger R. Cohen T. Marek I. Tetrahedron 2010; 66: 4874
  • 25 Edmonds DJ. Muir KW. Procter DJ. J. Org. Chem. 2003; 68: 3190
  • 26 Peterson DJ. J. Org. Chem. 1968; 33: 780
  • 27 Wadsworth WS. Jr. Org. React. 1977; 25: 73
  • 28 Urabe H. Suzuki K. Sato F. J. Am. Chem. Soc. 1997; 119: 10014
    • 29a Trost BM. Ball JT. J. Am. Chem. Soc. 2005; 127: 17644
    • 29b Sumida Y. Kato T. Yoshida S. Hosoya T. Org. Lett. 2012; 14: 1552
  • 30 Smitrovich JH. Woerpel KA. J. Org. Chem. 1996; 61: 6044
  • 31 Torigoe T. Ohmura T. Suginome M. J. Org. Chem. 2017; 82: 2943