Synthesis 2018; 50(06): 1209-1227
DOI: 10.1055/s-0037-1609175
short review
© Georg Thieme Verlag Stuttgart · New York

Cyclization Reactions for the Synthesis of Phthalans and Isoindolines­

Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy   Email: [email protected]
,
Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy   Email: [email protected]
› Author Affiliations
University of Pisa (PRA_2017_28) is gratefully acknowledged for funding.
Further Information

Publication History

Received: 27 November 2017

Accepted after revision: 18 December 2017

Publication Date:
31 January 2018 (online)


Abstract

Oxygen and nitrogen heterocycles are present in a vast number of natural substrates and biologically active molecules. In particular, phthalan and isoindoline subunits are found in many classes of products such as antibiotics, antioxidants, antimycotics, pigments, and fluorophores. Therefore several procedures dedicated to the construction of these heterocycles have been developed. In this review, a detailed analysis of the literature data regarding the synthesis of these nuclei via cyclization reactions is reported.

1 Introduction

2 Phthalans

2.1 Oxa-Pictet–Spengler Reaction

2.2 Garratt–Braverman Cyclization

2.3 Diels–Alder and Related Reactions

2.4 [2+2+2] Cyclotrimerization of Alkynes

2.5 Cycloetherification of ortho-Substituted Aromatics

2.6 Tandem Carbonylative Sonogashira Coupling–Cyclization Reactions

3 Isoindolines

3.1 Amination of Dihalides

3.2 Intramolecular Hydroamination

3.3 Diels–Alder and Related Reactions

3.4 [2+2+2] Cycloaddition Reactions

3.5 Tandem Carbonylative Sonogashira Coupling–Cyclization Reactions

4 Conclusions

 
  • References

  • 1 Harper JK. Arif AM. Ford EJ. Strobel GA. Porco JA. Jr. Tomer DP. Oneill KL. Heider EM. Grant DM. Tetrahedron 2003; 59: 2471
  • 2 Pollock BG. Expert Opin. Pharmacother. 2001; 2: 681
    • 3a Jiaang W.-T. Chen Y.-S. Hsu T. Wu S.-H. Chien C.-H. Chang C.-N. Chang S.-P. Lee S.-J. Chen X. Bioorg. Med. Chem. Lett. 2005; 15: 687
    • 3b Van der Veken P. Soroka A. Brandt I. Chen Y.-S. Maes M.-B. Lambeir A.-M. Chen X. Haemers A. Scharpé S. Augustyns K. De Meester I. J. Med. Chem. 2007; 50: 5568
    • 3c Van Goethem S. Van der Veken P. Dubois V. Soroka A. Lambeir A.-M. Chen X. Haemers A. Scharpé S. De Meester I. Augustyns K. Bioorg. Med. Chem. Lett. 2008; 18: 4159
    • 3d Kung P.-P. Huang B. Zhang G. Zhou JZ. Wang J. Digits JA. Skaptason J. Yamazaki S. Neul D. Zientek M. Elleraas J. Mehta P. Yin M.-J. Hickey MJ. Gajiwala KS. Rodgers C. Davies JF. Gehring MR. J. Med. Chem. 2010; 53: 499
    • 3e Tsai T.-Y. Yeh T.-K. Chen X. Hsu T. Jao Y.-C. Huang C.-H. Song J.-S. Huang Y.-C. Chien C.-H. Chiu J.-H. Yen S.-C. Tang H.-K. Chao Y.-S. Jiaang W.-T. J. Med. Chem. 2010; 53: 6572
    • 3f Kato N. Oka M. Murase T. Yoshida M. Sakairi M. Yakufu M. Yamashita S. Yasuda Y. Yoshikawa A. Hayashi Y. Shirai M. Mizuno Y. Takeuchi M. Makino M. Takeda M. Kakigami T. Org. Med. Chem. Lett. 2011; 1: 7
    • 3g Van Goethem S. Matheeussen V. Joossens J. Lambeir A.-M. Chen X. De Meester I. Haemers A. Augustyns K. Van der Veken P. J. Med. Chem. 2011; 54: 5737
    • 3h Ren J. Li J. Wang Y. Chen W. Shen A. Liu H. Chen D. Cao D. Li Y. Zhang N. Xu Y. Geng M. He J. Xiong B. Shen J. Bioorg. Med. Chem. Lett. 2014; 24: 2525
    • 3i Tso S.-C. Qi X. Gui W.-J. Wu C.-Y. Chuang JL. Wernstedt-Asterholm I. Morlock LK. Owens KR. Scherer PE. Williams NS. Tambar UK. Wynn RM. Chuang DT. J. Biol. Chem. 2014; 289: 4432
    • 3j Tso S.-C. Lou M. Wu C.-Y. Gui W.-J. Chuang JL. Morlock LK. Williams NS. Wynn RM. Qi X. Chuang DT. J. Med. Chem. 2017; 60: 1142
    • 4a Pinard E. Alberati D. Bender M. Borroni E. Brom V. Burner S. Fischer H. Hainzl D. Halm R. Hauser N. Jolidon S. Lengyel J. Marty H.-P. Meyer T. Moreau J.-L. Mory R. Narquizian R. Norcross RD. Schmid P. Wermuth R. Zimmerli D. Bioorg. Med. Chem. Lett. 2010; 20: 6960
    • 4b Andrade-Jorge E. Bahena-Herrera JR. Garcia-Gamez J. Padilla-Martínez II. Trujillo-Ferrara JG. Med. Chem. Res. 2017; 26: 2420
    • 5a Berger D. Citarella R. Dutia M. Greenberger L. Hallett W. Paul R. Powell D. J. Med. Chem. 1999; 42: 2145
    • 5b Shultz M. Fan J. Chen C. Cho YS. Davis N. Bickford S. Buteau K. Cao X. Holmqvist M. Hsu M. Jiang L. Liu G. Lu Q. Patel C. Suresh JR. Selvaraj M. Urban L. Wang P. Yan-Neale Y. Whitehead L. Zhang H. Zhou L. Atadja P. Bioorg. Med. Chem. Lett. 2011; 21: 4909
    • 5c Trejo Muñoz CR. Mancilla Percino T. Mera Jiménez E. Correa-Basurto J. Trujillo Ferrara JG. Med. Chem. Res. 2013; 22: 4039
    • 5d Trejo Muñoz CR. Jiménez EM. Pinto-Almazán R. Gandarilla JA. D. Correa-Basurto J. Trujillo-Ferrara JG. Guerra-Araiza C. Rohana PT. Percino TM. Med. Chem. Res. 2014; 23: 3227
    • 5e Mancilla-Percino T. Trejo-Muñoz CR. Díaz-Gandarilla JA. Talamás-Rohana P. Guzmán Ramírez JE. Cervantes J. Figueroa Ortíz A. Arch. Pharm. (Weinheim, Ger.) 2016; 349: 175
  • 6 Radtke V. Erk P. Sens B. In Isoindoline Pigments . Smith HM. Wiley-VCH; Weinheim: 2002: 211
  • 7 Almena J. Foubelo F. Yus M. Tetrahedron 1996; 52: 8545
    • 8a Almena J. Foubelo F. Yus M. Tetrahedron 1995; 51: 3351
    • 8b Azzena U. Demartis S. Fiori MG. Melloni G. Pisano L. Tetrahedron Lett. 1995; 36: 8123
    • 8c Azzena U. Demartis S. Melloni G. J. Org. Chem. 1996; 61: 4913
    • 8d García D. Foubelo F. Yus M. Tetrahedron 2008; 64: 4275
  • 9 Li DY. Shang XS. Chen GR. Liu PN. Org. Lett. 2013; 15: 3848
  • 10 Siyang HX. Wu XR. Liu HL. Wu XY. Liu PN. J. Org. Chem. 2014; 79: 1505
  • 11 Sośnicki JG. Monatsh. Chem. 2000; 131: 475
  • 12 Ohmura T. Kijima A. Suginome M. Org. Lett. 2011; 13: 1238
  • 13 Galletti P. Funiciello F. Soldati R. Giacomini D. Adv. Synth. Catal. 2015; 357: 1840
    • 14a Larghi EL. Kaufman TS. Synthesis 2006; 187
    • 14b Larghi EL. Kaufman TS. Eur. J. Org. Chem. 2011; 5195
  • 15 Guiso M. Betrow A. Marra C. Eur. J. Org. Chem. 2008; 1967
  • 16 Khorsandi Z. Khosropour AR. Mirkhani V. Mohammadpoor-Baltork I. Moghadam M. Tangestaninejad S. Tetrahedron Lett. 2011; 52: 1213
  • 17 Iwai I. Ide J. Chem. Pharm. Bull. 1964; 12: 1094
    • 18a Garratt PJ. Neoh SB. J. Am. Chem. Soc. 1975; 97: 3255
    • 18b Garratt PJ. Neoh SB. J. Org. Chem. 1979; 44: 2667
    • 19a Mondal S. Maji M. Basak A. Tetrahedron Lett. 2011; 52: 1183
    • 19b Addy PS. Dutta S. Biradha K. Basak A. Tetrahedron Lett. 2012; 53: 19
    • 19c Mitra T. Das J. Maji M. Das R. Das UK. Chattaraj PK. Basak A. RSC Adv. 2013; 3: 19844
    • 19d Panja A. Ghosh D. Basak A. Bioorg. Med. Chem. Lett. 2013; 23: 893
    • 19e Das J. Mukherjee R. Basak A. J. Org. Chem. 2014; 79: 3789
    • 19f Ghosh D. Biswas S. Ghosh K. Basak A. Tetrahedron Lett. 2014; 55: 3934
    • 19g Panja A. Banerjee DR. Basak A. RSC Adv. 2014; 4: 54235
    • 19h Das J. Bag SS. Basak A. J. Org. Chem. 2016; 81: 4623
  • 20 Shealy YF. Riordan JM. Frye JL. Campbell SR. Tetrahedron 1996; 52: 405
  • 21 Fernandez de la Pradilla R. Baile R. Tortosa M. Chem. Commun. 2003; 2476
  • 22 Hayakawa K. Yodo M. Ohsuki S. Kanematsu K. J. Am. Chem. Soc. 1984; 106: 6735
  • 23 Kramer NJ. Hoang TT. Dudley GB. Org. Lett. 2017; 19: 4636
  • 24 Lu L. Liu X.-Y. Shu X.-Z. Yang K. Ji K.-G. Liang Y.-M. J. Org. Chem. 2009; 74: 474
  • 25 Shen R.-W. Yang J.-J. Zhang L.-X. Chin. Chem. Lett. 2015; 26: 73
    • 26a Wu H.-J. Shao W.-D. Ying F.-H. Tetrahedron Lett. 1994; 35: 729
    • 26b Wu H.-J. Ying F.-H. Shao W.-D. J. Org. Chem. 1995; 60: 6168
    • 26c Wu H.-J. Yen C.-H. Chuang C.-T. J. Org. Chem. 1998; 63: 5064
  • 27 Torosyan GO. Russ. J. Org. Chem. 2002; 38: 1489
  • 28 Karaarslan M. Gokturk E. Demircan A. J. Chem. Res. 2007; 117
  • 29 Martín-Matute B. Cárdenas DJ. Echavarren AM. Angew. Chem. Int. Ed. 2001; 40: 4754
  • 30 Hashmi AS. K. Wölfle M. Ata F. Hamzic M. Salathé R. Frey W. Adv. Synth. Catal. 2006; 348: 2501
  • 31 Wang K.-P. Yun SY. Mamidipalli P. Lee D. Chem. Sci. 2013; 4: 3205
  • 32 Karmakar R. Ghorai S. Xia Y. Lee D. Molecules 2015; 20: 15862
  • 33 Niu D. Wang T. Woods BP. Hoye TR. Org. Lett. 2014; 16: 254
  • 34 Karmakar R. Wang K.-P. Yun SY. Mamidipalli P. Lee D. Org. Biomol. Chem. 2016; 14: 4782
  • 35 Zhang J. Niu D. Brinker VA. Hoye TR. Org. Lett. 2016; 18: 5596
  • 36 Chen J. Palani V. Hoye TR. J. Am. Chem. Soc. 2016; 138: 4318
  • 37 Watanabe T. Curran DP. Taniguchi T. Org. Lett. 2015; 17: 3450
  • 38 Ghorai S. Lee D. Tetrahedron 2017; 73: 4062
    • 39a Grigg R. Scott R. Stevenson P. Tetrahedron Lett. 1982; 23: 2691
    • 39b Grigg R. Scott R. Stevenson P. J. Chem. Soc., Perkin Trans. 1 1988; 1357
  • 40 Clayden J. Moran WJ. Org. Biomol. Chem. 2007; 5: 1028
    • 41a Tanaka K. Hara H. Nishida G. Hirano M. Org. Lett. 2007; 9: 1907
    • 41b Konno T. Moriyasu K. Kinugawa R. Ishihara T. Org. Biomol. Chem. 2010; 8: 1718
    • 42a McDonald FE. Zhu HY. H. Holmquist CR. J. Am. Chem. Soc. 1995; 117: 6605
    • 42b Suryawanshi SB. Dushing MP. Gonnade RG. Ramana CV. Tetrahedron 2010; 66: 6085
    • 43a Kondoh A. Yorimitsu H. Oshima K. J. Am. Chem. Soc. 2007; 129: 6996
    • 43b Kobatake T. Kondoh A. Yoshida S. Yorimitsu H. Oshima K. Chem. Asian J. 2008; 3: 1613
  • 44 Garcia L. Pla-Quintana A. Roglans A. Org. Biomol. Chem. 2009; 7: 5020
  • 45 Hara H. Hirano M. Tanaka K. Tetrahedron 2009; 65: 5093
  • 46 Fang X. Sun J. Tong X. Chem. Commun. 2010; 46: 3800
  • 47 Young DD. Senaiar RS. Deiters A. Chem. Eur. J. 2006; 12: 5563
  • 48 Uchimura H. Ito J.-i. Iwasa S. Nishiyama H. J. Organomet. Chem. 2007; 692: 481
  • 49 Brun S. Parera M. Pla-Quintana A. Roglans A. León T. Achard T. Solà J. Verdaguer X. Riera A. Tetrahedron 2010; 66: 9032
  • 50 Kinoshita H. Shinokubo H. Oshima K. J. Am. Chem. Soc. 2003; 125: 7784
  • 51 Wang Y.-H. Huang S.-H. Lin T.-C. Tsai F.-Y. Tetrahedron 2010; 66: 7136
  • 52 Fernández M. Ferré M. Pla-Quintana A. Parella T. Pleixats R. Roglans A. Eur. J. Org. Chem. 2014; 6242
  • 53 Tanaka K. Takeishi K. Noguchi K. J. Am. Chem. Soc. 2006; 128: 4586
  • 54 Nishida G. Suzuki N. Noguchi K. Tanaka K. Org. Lett. 2006; 8: 3489
    • 55a Doherty S. Knight JG. Smyth CH. Harrington RW. Clegg W. Org. Lett. 2007; 9: 4925
    • 55b Nishida G. Noguchi K. Hirano M. Tanaka K. Angew. Chem. Int. Ed. 2007; 46: 3951
    • 55c Mori F. Fukawa N. Noguchi K. Tanaka K. Org. Lett. 2011; 13: 362
  • 56 Nishida G. Ogaki S. Yusa Y. Yokozawa T. Noguchi K. Tanaka K. Org. Lett. 2008; 10: 2849
    • 57a Oppenheimer J. Hsung RP. Figueroa R. Johnson WL. Org. Lett. 2007; 9: 3969
    • 57b Oppenheimer J. Johnson WL. Figueroa R. Hayashi R. Hsung RP. Tetrahedron 2009; 65: 5001
  • 58 Nishida G. Noguchi K. Hirano M. Tanaka K. Angew. Chem. Int. Ed. 2008; 47: 3410
  • 59 Suda T. Noguchi K. Hirano M. Tanaka K. Chem. Eur. J. 2008; 14: 6593
  • 60 Sakiyama N. Hojo D. Noguchi K. Tanaka K. Chem. Eur. J. 2011; 17: 1428
  • 61 Ogaki S. Shibata Y. Noguchi K. Tanaka K. J. Org. Chem. 2011; 76: 1926
  • 62 Sugihara T. Wakabayashi A. Nagai Y. Takao H. Imagawa H. Nishizawa M. Chem. Commun. 2002; 576
  • 63 Gandon V. Leca D. Aechtner T. Vollhardt KP. C. Malacria M. Aubert C. Org. Lett. 2004; 6: 3405
  • 64 Young DD. Deiters A. Angew. Chem. Int. Ed. 2007; 46: 5187
  • 65 Wu M.-S. Shanmugasundaram M. Cheng C.-H. Chem. Commun. 2003; 718
  • 66 Turek P. Kotora M. Hocek M. Císařová I. Tetrahedron Lett. 2003; 44: 785
  • 67 Jungk P. Fischer F. Thiel I. Hapke M. J. Org. Chem. 2015; 80: 9781
  • 68 Thiel I. Jiao H. Spannenberg A. Hapke M. Chem. Eur. J. 2013; 19: 2548
  • 69 Geny A. Agenet N. Iannazzo L. Malacria M. Aubert C. Gandon V. Angew. Chem. Int. Ed. 2009; 48: 1810
  • 70 Goswami A. Ito T. Okamoto S. Adv. Synth. Catal. 2007; 349: 2368
  • 71 Sugiyama Y.-k. Kariwa T. Sakurada T. Okamoto S. Synlett 2012; 23: 2549
    • 72a Jungk P. Fischer F. Hapke M. ACS Catal. 2016; 6: 3025
    • 72b Jungk P. Täufer T. Thiel I. Hapke M. Synthesis 2016; 48: 2026
  • 73 Yamamoto Y. Ogawa R. Itoh K. Chem. Commun. 2000; 549
  • 74 Yamamoto Y. Arakawa T. Ogawa R. Itoh K. J. Am. Chem. Soc. 2003; 125: 12143
  • 75 Yamamoto Y. Hashimoto T. Hattori K. Kikuchi M. Nishiyama H. Org. Lett. 2006; 8: 3565
  • 76 Yamamoto Y. Hattori K. Ishii J.-i. Nishiyama H. Tetrahedron 2006; 62: 4294
    • 77a Yamamoto Y. Hattori K. Nishiyama H. J. Am. Chem. Soc. 2006; 128: 8336
    • 77b Yamamoto Y. Hattori K. Tetrahedron 2008; 64: 847
    • 78a Mallagaray Á. Medina S. Domínguez G. Pérez-Castells J. Synlett 2010; 2114
    • 78b Yuan W. Wei Y. Shi M. ChemistryOpen 2013; 2: 63
    • 78c Jacquet J. Auvinet A.-L. Mandadapu AK. Haddad M. Ratovelomanana-Vidal V. Michelet V. Adv. Synth. Catal. 2015; 357: 1387
    • 79a Takeuchi R. Tanaka S. Nakaya Y. Tetrahedron Lett. 2001; 42: 2991
    • 79b Kezuka S. Tanaka S. Ohe T. Nakaya Y. Takeuchi R. J. Org. Chem. 2006; 71: 543
    • 80a Auvinet A.-L. Ez-Zoubir M. Bompard S. Vitale MR. Brown JA. Michelet V. Ratovelomanana-Vidal V. ChemCatChem 2013; 5: 2389
    • 80b Auvinet A.-L. Michelet V. Ratovelomanana-Vidal V. Synthesis 2013; 45: 2003
  • 81 Masuyama Y. Miyazaki K. Suzuki N. Asian J. Org. Chem. 2013; 2: 750
    • 82a Shibata T. Fujimoto T. Yokota K. Takagi K. J. Am. Chem. Soc. 2004; 126: 8382
    • 82b Shibata T. Yoshida S. Arai Y. Otsuka M. Endo K. Tetrahedron 2008; 64: 821
    • 83a Ikeda S.-i. Watanabe H. Sato Y. J. Org. Chem. 1998; 63: 7026
    • 83b Jeevanandam A. Korivi RP. Huang IW. Cheng C.-H. Org. Lett. 2002; 4: 807
    • 83c Turek P. Kotora M. Tišlerová I. Hocek M. Votruba I. Císařová I. J. Org. Chem. 2004; 69: 9224
    • 83d Turek P. Novák P. Pohl R. Hocek M. Kotora M. J. Org. Chem. 2006; 71: 8978
    • 83e Lu X. Pan B. Wu F. Xin X. Wan B. Tetrahedron Lett. 2015; 56: 4753
    • 83f Pal S. Uyeda C. J. Am. Chem. Soc. 2015; 137: 8042
    • 84a Dufková L. Císařová I. Štepnička P. Kotora M. Eur. J. Org. Chem. 2003; 2882
    • 84b Saino N. Kogure D. Kase K. Okamoto S. J. Organomet. Chem. 2006; 691: 3129
    • 84c Minakawa M. Ishikawa T. Namioka J. Hirooka S. Zhou B. Kawatsura M. RSC Adv. 2014; 4: 41353
    • 84d Chowdhury H. Chatterjee N. Goswami A. Eur. J. Org. Chem. 2015; 7735
    • 84e Bhatt D. Chowdhury H. Goswami A. Org. Lett. 2017; 19: 3350
    • 85a Yamamoto Y. Nagata A. Nagata H. Ando Y. Arikawa Y. Tatsumi K. Itoh K. Chem.–Eur. J. 2003; 9: 2469
    • 85b Zhou P. Zheng M. Jiang H. Li X. Qi C. J. Org. Chem. 2011; 76: 4759
  • 86 Ozerov OV. Patrick BO. Ladipo FT. J. Am. Chem. Soc. 2000; 122: 6423
  • 87 Capriati V. Florio S. Luisi R. Perna FM. Salomone A. J. Org. Chem. 2006; 71: 3984
  • 88 Coppi DI. Salomone A. Perna FM. Capriati V. Angew. Chem. Int. Ed. 2012; 51: 7532
    • 89a Bennett JM. Shapiro JD. Choinski KN. Mei Y. Aulita SM. Reinheimer EW. Majireck MM. Tetrahedron Lett. 2017; 58: 1117
    • 89b Sun R. Jiang Y. Tang X.-Y. Shi M. Asian J. Org. Chem. 2017; 6: 83
  • 90 Dem’yanovich VM. Shishkina IN. Kuznetsova AA. Potekhin KA. Chesnova AV. Russ. J. Org. Chem. 2006; 42: 986
    • 91a Parham WE. Bradsher CK. Reames DC. J. Org. Chem. 1981; 46: 4804
    • 91b Delacroix T. Bérillon L. Cahiez G. Knochel P. J. Org. Chem. 2000; 65: 8108
    • 91c Martin C. Mailliet P. Maddaluno J. J. Org. Chem. 2001; 66: 3797
    • 91d Mihara M. Ishino Y. Minakata S. Komatsu M. Synlett 2002; 1526
    • 91e Yus M. Foubelo F. Ferrández JV. Tetrahedron 2003; 59: 2083
    • 91f Panda B. Sarkar TK. Tetrahedron Lett. 2008; 49: 6701
    • 91g Zhang L. Zhang W. Liu J. Hu J. J. Org. Chem. 2009; 74: 2850
    • 91h Kim J. Lee D.-H. Kalutharage N. Yi CS. ACS Catal. 2014; 4: 3881
    • 91i Arico F. Evaristo S. Tundo P. Green Chem. 2015; 17: 1176
    • 91j Li D.-Y. Wei Y. Shi M. Asian J. Org. Chem. 2016; 5: 423
    • 92a Chao B. Dittmer DC. Tetrahedron Lett. 2000; 41: 6001
    • 92b Kobayashi K. Shikata K. Fukamachi S. Konishi H. Heterocycles 2008; 75: 599
    • 92c Luzzio FA. Okoromoba OE. Tetrahedron Lett. 2011; 52: 6530
    • 92d Yuan H. Gong Y. J. Fluorine Chem. 2013; 149: 125
    • 92e Guo K. Chen X. Guan M. Zhao Y. Org. Lett. 2015; 17: 1802
    • 92f Ida A. Kitao K. Hoshiya N. Uenishi J. i. Tetrahedron Lett. 2015; 56: 1956
    • 92g Krishna J. Niharika P. Satyanarayana G. RSC Adv. 2015; 5: 26749
    • 92h Jarrige L. Carboni A. Dagousset G. Levitre G. Magnier E. Masson G. Org. Lett. 2016; 18: 2906
    • 93a Padwa A. Krumpe KE. Weingarten MD. J. Org. Chem. 1995; 60: 5595
    • 93b Weingarten MD. Padwa A. Tetrahedron Lett. 1995; 36: 4717
  • 94 Li DY. Shi KJ. Mao XF. Zhao ZL. Wu XY. Liu PN. Tetrahedron 2014; 70: 7022
  • 95 Mancuso R. Mehta S. Gabriele B. Salerno G. Jenks WS. Larock RC. J. Org. Chem. 2010; 75: 897
  • 96 Hiroya K. Jouka R. Kameda M. Yasuhara A. Sakamoto T. Tetrahedron 2001; 57: 9697
  • 97 Duan S. Cress K. Waynant K. Ramos-Miranda E. Herndon JW. Tetrahedron 2007; 63: 2959
  • 98 Dell’Acqua M. Facoetti D. Abbiati G. Rossi E. Synthesis 2010; 2367
  • 99 Brinkmann C. Barrett AG. M. Hill MS. Procopiou PA. Reid S. Organometallics 2012; 31: 7287
    • 100a Yu X. Seo S. Marks TJ. J. Am. Chem. Soc. 2007; 129: 7244
    • 100b Seo S. Yu X. Marks TJ. J. Am. Chem. Soc. 2009; 131: 263
    • 100c Sun Y. Wu G. Cen D. Chen Y. Wang L. Dalton Trans. 2012; 41: 9682
    • 100d Martínez J. Otero A. Lara-Sánchez A. Castro-Osma JA. Fernández-Baeza J. Sánchez-Barba LF. Rodríguez AM. Organometallics 2016; 35: 1802
  • 101 Wobser SD. Marks TJ. Organometallics 2013; 32: 2517
  • 102 Villemin D. Goussu D. Heterocycles 1989; 29: 1255
  • 103 Chai Z. Xie Z.-F. Liu X.-Y. Zhao G. Wang J.-D. J. Org. Chem. 2008; 73: 2947
    • 104a Lu D. Zhou Y. Li Y. Yan S. Gong Y. J. Org. Chem. 2011; 76: 8869
    • 104b Tomás-Mendivil E. Starck J. Ortuno J.-C. Michelet V. Org. Lett. 2015; 17: 6126
    • 104c Cao Z. Li S. Li J. Meng X. Zhang H. Sun X. You J. New J. Chem. 2016; 40: 8211
    • 105a Fürstner A. Szillat H. Stelzer F. J. Am. Chem. Soc. 2000; 122: 6785
    • 105b Fürstner A. Stelzer F. Szillat H. J. Am. Chem. Soc. 2001; 123: 11863
    • 105c Nakamura I. Chan CS. Araki T. Terada M. Yamamoto Y. Org. Lett. 2008; 10: 309
    • 105d Nakamura I. Chan CS. Araki T. Terada M. Yamamoto Y. Adv. Synth. Catal. 2009; 351: 1089
  • 106 Sarbajna A. Pandey P. Rahaman SM. W. Singh K. Tyagi A. Dixneuf PH. Bera JK. ChemCatChem 2017; 9: 1397
  • 107 Lin C.-H. Wang Y.-J. Lee C.-F. Eur. J. Org. Chem. 2010; 4368
  • 108 Praveen C. Iyyappan C. Perumal PT. Tetrahedron Lett. 2010; 51: 4767
  • 109 Pouy MJ. Delp SA. Uddin J. Ramdeen VM. Cochrane NA. Fortman GC. Gunnoe TB. Cundari TR. Sabat M. Myers WH. ACS Catal. 2012; 2: 2182
  • 110 Gabriele B. Salerno G. Fazio A. Pittelli R. Tetrahedron 2003; 59: 6251
  • 111 Bacchi A. Costa M. Della Cà N. Fabbricatore M. Fazio A. Gabriele B. Nasi C. Salerno G. Eur. J. Org. Chem. 2004; 574
  • 112 Della Ca N. Campanini F. Gabriele B. Salerno G. Massera C. Costa M. Adv. Synth. Catal. 2009; 351: 2423
  • 113 Fan YC. Kwon O. Org. Lett. 2012; 14: 3264
  • 114 Dell’Acqua M. Facoetti D. Abbiati G. Rossi E. Tetrahedron 2011; 67: 1552
  • 115 Berg TC. Bakken V. Gundersen L.-L. Petersen D. Tetrahedron 2006; 62: 6121
  • 116 Buxaderas E. Alonso DA. Nájera C. Adv. Synth. Catal. 2014; 356: 3415
  • 117 Chahdoura F. Mallet-Ladeira S. Gomez M. Org. Chem. Front. 2015; 2: 312
  • 118 Aronica LA. Giannotti L. Tuci G. Zinna F. Eur. J. Org. Chem. 2015; 4944
  • 119 Fraser RR. Renaud RN. Can. J. Chem. 1971; 49: 746
    • 120a Cignarella G. Savelli F. Sanna P. Synthesis 1975; 252
    • 120b Cignarella G. Sanna P. Miele E. Anania V. Desole MS. J. Med. Chem. 1981; 24: 1003
    • 120c Sanna P. Savelli F. Cignarella G. J. Heterocycl. Chem. 1981; 18: 475
  • 121 Ju Y. Varma RS. J. Org. Chem. 2006; 71: 135
  • 122 Barnard TM. Vanier GS. Collins MJ. Org. Process Res. Dev. 2006; 10: 1233
  • 123 Subbarayappa A. Patoliya PU. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 545
  • 124 Henderson L. Knight DW. Williams AC. Synlett 2012; 23: 1667
  • 125 Kobayashi K. Kondo S. Hashimoto K. Fukamachi S. Morikawa O. Konishi H. Heterocycles 2007; 71: 1827
  • 126 Mahdi T. Stephan DW. Chem. Eur. J. 2015; 21: 11134
  • 127 Ogata T. Kimachi T. Yamada K.-i. Yamamoto Y. Tomioka K. Heterocycles 2012; 86: 469
  • 128 Cid MM. Domínguez D. Castedo L. Vázquez-López EM. Tetrahedron 1999; 55: 5599
  • 129 Fustero S. Ibáñez I. Barrio P. Maestro MA. Catalán S. Org. Lett. 2013; 15: 832
  • 130 Clary KN. Parvez M. Back TG. J. Org. Chem. 2010; 75: 3751
  • 131 Wang T. Naredla RR. Thompson SK. Hoye TR. Nature (London) 2016; 532: 484
  • 132 Hashmi AS. K. Frost TM. Bats JW. J. Am. Chem. Soc. 2000; 122: 11553
    • 133a Hashmi AS. K. Frost TM. Bats JW. Catal. Today 2002; 72: 19
    • 133b Hashmi AS. K. Salathé R. Frey W. Chem. Eur. J. 2006; 12: 6991
  • 134 Hashmi AS. K. Weyrauch JP. Kurpejović E. Frost TM. Miehlich B. Frey W. Bats JW. Chem. Eur. J. 2006; 12: 5806
  • 135 Hashmi AS. K. Schäfer S. Bats JW. Frey W. Rominger F. Eur. J. Org. Chem. 2008; 4891
  • 136 Hashmi AS. K. Ghanbari M. Rudolph M. Rominger F. Chem. Eur. J. 2012; 18: 8113
    • 137a Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 137b Chopade PR. Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 137c Dominguez G. Perez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
  • 138 Shibata Y. Tanaka K. Synthesis 2012; 44: 323
  • 139 Sun Q. Zhou X. Islam K. Kyle DJ. Tetrahedron Lett. 2001; 42: 6495
  • 140 Bonfield ER. Li C.-J. Adv. Synth. Catal. 2008; 350: 370
  • 141 Liang C. Gu L. Yang Y. Chen X. Synth. Commun. 2014; 44: 2416
  • 142 Wu W. Zhang XY. Kang SX. Chin. Chem. Lett. 2010; 21: 18
  • 143 Auvinet A.-L. Ez-Zoubir M. Vitale MR. Brown JA. Michelet V. Ratovelomanana-Vidal V. ChemSusChem 2012; 5: 1888
  • 144 Nishida M. Shiga H. Mori M. J. Org. Chem. 1998; 63: 8606
    • 145a Sato Y. Nishimata T. Mori M. J. Org. Chem. 1994; 59: 6133
    • 145b Sato Y. Nishimata T. Mori M. Heterocycles 1997; 44: 443
  • 146 Mori M. Kuriyama K. Ochifuji N. Watanuki S. Chem. Lett. 1995; 24: 615
  • 147 Aronica LA. Albano G. Giannotti L. Meucci E. Eur. J. Org. Chem. 2017; 955